Cos sin 0 = Let A-s (a) (b) sin 0 со B = (1 − A)(I + A)−¹ and C = (I − B³)(I + B³)−1 Assume (I + A)−¹ = (I + A−¹)/ det(I + A). Show that BT = -B If (I + B³) and (I – B³) are both invertible and (I − B³)−¹(I + B³) = (I + B³)(I − B³)-¹. Show that C is orthogonal. (Hint: reduce CT to C-1 by using (a))

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

tks

Let A = [Cine
(a)
(b)
sin Ꮎ
nº], B = (1 − A)(I + A)−¹ and C = (I − B³) (I + B³)−1
-1
COS
Assume (I + A)-¹ = (1 + A−¹)/ det(I + A). Show that BT = - B
If (I + B³) and (I – B³) are both invertible and (I − B³)−¹(I + B³) =
(I + B³) (IB³)-1. Show that C is orthogonal.
(Hint: reduce CT to C-¹ by using (a))
Transcribed Image Text:Let A = [Cine (a) (b) sin Ꮎ nº], B = (1 − A)(I + A)−¹ and C = (I − B³) (I + B³)−1 -1 COS Assume (I + A)-¹ = (1 + A−¹)/ det(I + A). Show that BT = - B If (I + B³) and (I – B³) are both invertible and (I − B³)−¹(I + B³) = (I + B³) (IB³)-1. Show that C is orthogonal. (Hint: reduce CT to C-¹ by using (a))
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,