(cos-1+tan-¹) exactly (no calculators). 2 Evaluate sin (cos

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
Please help me
**Problem Statement**

5. Evaluate \( \sin \left( \cos^{-1} \frac{\sqrt{3}}{2} + \tan^{-1} \frac{5}{4} \right) \) exactly (no calculators).

**Explanation of Terms**

- \( \cos^{-1} \) represents the inverse cosine function, also known as arccosine. It gives the angle whose cosine is the specified value.
- \( \tan^{-1} \) represents the inverse tangent function, also known as arctangent. It gives the angle whose tangent is the specified value.
- \( \sin \) represents the sine function, which is a trigonometric function of an angle.

**Approach**

1. Find the angle for \( \cos^{-1} \frac{\sqrt{3}}{2} \). Since \( \cos(\frac{\pi}{6}) = \frac{\sqrt{3}}{2} \), then \( \cos^{-1} \frac{\sqrt{3}}{2} = \frac{\pi}{6} \).

2. Find the angle for \( \tan^{-1} \frac{5}{4} \). This requires knowledge of trigonometric values or constructing a right triangle with opposite side 5 and adjacent side 4 to find the angle.

3. Use the angle sum identity for sine:
   \[
   \sin(A + B) = \sin A \cos B + \cos A \sin B
   \]
   where \( A = \cos^{-1} \frac{\sqrt{3}}{2} \) and \( B = \tan^{-1} \frac{5}{4} \).

4. Calculate each component using known values or from derived angles above without a calculator.
Transcribed Image Text:**Problem Statement** 5. Evaluate \( \sin \left( \cos^{-1} \frac{\sqrt{3}}{2} + \tan^{-1} \frac{5}{4} \right) \) exactly (no calculators). **Explanation of Terms** - \( \cos^{-1} \) represents the inverse cosine function, also known as arccosine. It gives the angle whose cosine is the specified value. - \( \tan^{-1} \) represents the inverse tangent function, also known as arctangent. It gives the angle whose tangent is the specified value. - \( \sin \) represents the sine function, which is a trigonometric function of an angle. **Approach** 1. Find the angle for \( \cos^{-1} \frac{\sqrt{3}}{2} \). Since \( \cos(\frac{\pi}{6}) = \frac{\sqrt{3}}{2} \), then \( \cos^{-1} \frac{\sqrt{3}}{2} = \frac{\pi}{6} \). 2. Find the angle for \( \tan^{-1} \frac{5}{4} \). This requires knowledge of trigonometric values or constructing a right triangle with opposite side 5 and adjacent side 4 to find the angle. 3. Use the angle sum identity for sine: \[ \sin(A + B) = \sin A \cos B + \cos A \sin B \] where \( A = \cos^{-1} \frac{\sqrt{3}}{2} \) and \( B = \tan^{-1} \frac{5}{4} \). 4. Calculate each component using known values or from derived angles above without a calculator.
Expert Solution
Step 1

We use 

sin(A+B)=sin(x)cos(y)+cos(x)sin(y)

steps

Step by step

Solved in 5 steps with 4 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning