Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
Please explain how to do this with answer available
![Given the mathematical problem:
\[
\cos \theta = \frac{8}{9}, \quad \tan \theta < 0
\]
**Objective:** Find \(\sin \theta\).
**Explanation:**
1. **Identify the Quadrant:**
- Since \(\cos \theta\) is positive and \(\tan \theta\) is negative, \(\theta\) must be in the fourth quadrant.
2. **Use the Pythagorean Identity:**
\[
\sin^2 \theta + \cos^2 \theta = 1
\]
Substitute \(\cos \theta = \frac{8}{9}\):
\[
\sin^2 \theta + \left(\frac{8}{9}\right)^2 = 1
\]
\[
\sin^2 \theta + \frac{64}{81} = 1
\]
\[
\sin^2 \theta = 1 - \frac{64}{81}
\]
\[
\sin^2 \theta = \frac{81}{81} - \frac{64}{81}
\]
\[
\sin^2 \theta = \frac{17}{81}
\]
3. **Calculate \(\sin \theta\):**
Since \(\theta\) is in the fourth quadrant, \(\sin \theta\) is negative:
\[
\sin \theta = -\sqrt{\frac{17}{81}}
\]
\[
\sin \theta = -\frac{\sqrt{17}}{9}
\]
Therefore, \(\sin \theta = -\frac{\sqrt{17}}{9}\).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F63d16113-ff39-4f92-89f8-61ce82bfb495%2Fe9ff5f2a-c1de-422f-a460-55fffae8951d%2Fu6a28q6_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Given the mathematical problem:
\[
\cos \theta = \frac{8}{9}, \quad \tan \theta < 0
\]
**Objective:** Find \(\sin \theta\).
**Explanation:**
1. **Identify the Quadrant:**
- Since \(\cos \theta\) is positive and \(\tan \theta\) is negative, \(\theta\) must be in the fourth quadrant.
2. **Use the Pythagorean Identity:**
\[
\sin^2 \theta + \cos^2 \theta = 1
\]
Substitute \(\cos \theta = \frac{8}{9}\):
\[
\sin^2 \theta + \left(\frac{8}{9}\right)^2 = 1
\]
\[
\sin^2 \theta + \frac{64}{81} = 1
\]
\[
\sin^2 \theta = 1 - \frac{64}{81}
\]
\[
\sin^2 \theta = \frac{81}{81} - \frac{64}{81}
\]
\[
\sin^2 \theta = \frac{17}{81}
\]
3. **Calculate \(\sin \theta\):**
Since \(\theta\) is in the fourth quadrant, \(\sin \theta\) is negative:
\[
\sin \theta = -\sqrt{\frac{17}{81}}
\]
\[
\sin \theta = -\frac{\sqrt{17}}{9}
\]
Therefore, \(\sin \theta = -\frac{\sqrt{17}}{9}\).
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1
Step by step
Solved in 2 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning