Convert the rectangular coordinates of each point to polar coordinates. Use degrees for 0. 5. (√3,3) 9. (4,4) x² + y² = r²

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Question
**Converting Rectangular Coordinates to Polar Coordinates**

**Instructions:**
Convert the rectangular coordinates of each point to polar coordinates. Use degrees for θ.

1. \( (\sqrt{3}, 3) \)
2. \( (-2, 2) \)
3. \( (0, 2) \)
4. \( (-3, -3) \)
5. \( (4, 4) \)
6. \( (-2, 2\sqrt{3}) \)

**Formulas:**
\[ x^2 + y^2 = r^2 \]
\[ \tan \theta = \frac{y}{x} \]

**Example:**

**Sketch the graph of the polar equation \( r = 2 \cos \theta \)**

**Step 1 => Create table**

\[
\begin{array}{|c|c|c|c|c|c|c|c|c|c|}
\hline
\theta & 0^\circ & 30^\circ & 45^\circ & 60^\circ & 90^\circ & 120^\circ & 135^\circ & 150^\circ & 180^\circ \\
\hline
r &   &   &   &   &   &   &   &   &   \\
\hline
\end{array}
\]

**Step 2 => Plot points and draw curve**

**Explanation of Diagram:**

The diagram below the steps illustrates the graph of the polar equation \( r = 2 \cos \theta \). The horizontal x-axis and vertical y-axis guide the placement of these points. Various points are plotted such as:

- \( r = 2, \theta = 0^\circ \) at (2, 0)
- \( r = \sqrt{3}, \theta = 30^\circ \) at \((\sqrt{3}, 30^\circ)\)
- \( r = 1, \theta = 60^\circ \) at (1, 60^\circ)
- \( r = 0, \theta = 90^\circ \) at (0, 90^\circ)

The points are joined to reveal the curve described by the polar equation \( r = 2 \cos \theta \).
Transcribed Image Text:**Converting Rectangular Coordinates to Polar Coordinates** **Instructions:** Convert the rectangular coordinates of each point to polar coordinates. Use degrees for θ. 1. \( (\sqrt{3}, 3) \) 2. \( (-2, 2) \) 3. \( (0, 2) \) 4. \( (-3, -3) \) 5. \( (4, 4) \) 6. \( (-2, 2\sqrt{3}) \) **Formulas:** \[ x^2 + y^2 = r^2 \] \[ \tan \theta = \frac{y}{x} \] **Example:** **Sketch the graph of the polar equation \( r = 2 \cos \theta \)** **Step 1 => Create table** \[ \begin{array}{|c|c|c|c|c|c|c|c|c|c|} \hline \theta & 0^\circ & 30^\circ & 45^\circ & 60^\circ & 90^\circ & 120^\circ & 135^\circ & 150^\circ & 180^\circ \\ \hline r & & & & & & & & & \\ \hline \end{array} \] **Step 2 => Plot points and draw curve** **Explanation of Diagram:** The diagram below the steps illustrates the graph of the polar equation \( r = 2 \cos \theta \). The horizontal x-axis and vertical y-axis guide the placement of these points. Various points are plotted such as: - \( r = 2, \theta = 0^\circ \) at (2, 0) - \( r = \sqrt{3}, \theta = 30^\circ \) at \((\sqrt{3}, 30^\circ)\) - \( r = 1, \theta = 60^\circ \) at (1, 60^\circ) - \( r = 0, \theta = 90^\circ \) at (0, 90^\circ) The points are joined to reveal the curve described by the polar equation \( r = 2 \cos \theta \).
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 5 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning