Convert the point (x, y, z) = (2, — 2, 1) to spherical coordinates. Give answers as positive values, either as expressions, or decimals to one decimal place. (p, 0, 0) =

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Question
Convert the point \((x, y, z) = (2, -2, 1)\) to spherical coordinates. Give answers as positive values, either as expressions, or decimals to one decimal place.

\((\rho, \theta, \phi) =\) ☐

**Explanation:**  
To convert from Cartesian coordinates \((x, y, z)\) to spherical coordinates \((\rho, \theta, \phi)\), use the following formulas:

1. \(\rho = \sqrt{x^2 + y^2 + z^2}\)
2. \(\theta = \arctan{\left(\frac{y}{x}\right)}\)
3. \(\phi = \arccos{\left(\frac{z}{\rho}\right)}\)

Substituting the given values \((x, y, z) = (2, -2, 1)\):

1. Calculate \(\rho\):
   \[
   \rho = \sqrt{2^2 + (-2)^2 + 1^2} = \sqrt{4 + 4 + 1} = \sqrt{9} = 3
   \]

2. Calculate \(\theta\):
   \[
   \theta = \arctan{\left(\frac{-2}{2}\right)} = \arctan{(-1)} \approx -0.785 \text{ radians (adjust to positive value within range)}
   \]

3. Calculate \(\phi\):
   \[
   \phi = \arccos{\left(\frac{1}{3}\right)} \approx 1.230 \text{ radians}
   \]

Adjust \(\theta\) to be positive by adding \(2\pi\) if necessary (e.g., \(\theta \approx 5.498 \text{ radians} \)). Use calculator or trigonometric table for accurate values.
Transcribed Image Text:Convert the point \((x, y, z) = (2, -2, 1)\) to spherical coordinates. Give answers as positive values, either as expressions, or decimals to one decimal place. \((\rho, \theta, \phi) =\) ☐ **Explanation:** To convert from Cartesian coordinates \((x, y, z)\) to spherical coordinates \((\rho, \theta, \phi)\), use the following formulas: 1. \(\rho = \sqrt{x^2 + y^2 + z^2}\) 2. \(\theta = \arctan{\left(\frac{y}{x}\right)}\) 3. \(\phi = \arccos{\left(\frac{z}{\rho}\right)}\) Substituting the given values \((x, y, z) = (2, -2, 1)\): 1. Calculate \(\rho\): \[ \rho = \sqrt{2^2 + (-2)^2 + 1^2} = \sqrt{4 + 4 + 1} = \sqrt{9} = 3 \] 2. Calculate \(\theta\): \[ \theta = \arctan{\left(\frac{-2}{2}\right)} = \arctan{(-1)} \approx -0.785 \text{ radians (adjust to positive value within range)} \] 3. Calculate \(\phi\): \[ \phi = \arccos{\left(\frac{1}{3}\right)} \approx 1.230 \text{ radians} \] Adjust \(\theta\) to be positive by adding \(2\pi\) if necessary (e.g., \(\theta \approx 5.498 \text{ radians} \)). Use calculator or trigonometric table for accurate values.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,