converged to a value of about 0.877 fm. This value was challenged by a 2010 experiment using a third method, which produced a radius about 4% smaller than this, at 0.842 fm. New experimental results reported in the fall of 2019 agree with the smaller measurement, and it has been proposed that the puzzle is now solved, though this opinion is not yet universally held. This type of data is crucial as we move close and closer to achieving fusion - a star on Earth. Fusion probability is greatly enhanced when appropriate nuclei are brought close together, but mutual Coulomb repulsion must be overcome. This can be done using the kinetic energy of high-temperature gas ions or by accelerating the nuclei toward one another. If two hydrogen nuclei are 200pm apart and are then moved closer together till they are 15fm apart - here strong nuclear force is negligible compared to electrostatic repulsion. 1) How much energy is required for this? 2) How fast will the protons be moving at their original positions if they are released when at 15fm?
converged to a value of about 0.877 fm. This value was challenged by a 2010 experiment using a third method, which produced a radius about 4% smaller than this, at 0.842 fm. New experimental results reported in the fall of 2019 agree with the smaller measurement, and it has been proposed that the puzzle is now solved, though this opinion is not yet universally held. This type of data is crucial as we move close and closer to achieving fusion - a star on Earth. Fusion probability is greatly enhanced when appropriate nuclei are brought close together, but mutual Coulomb repulsion must be overcome. This can be done using the kinetic energy of high-temperature gas ions or by accelerating the nuclei toward one another. If two hydrogen nuclei are 200pm apart and are then moved closer together till they are 15fm apart - here strong nuclear force is negligible compared to electrostatic repulsion. 1) How much energy is required for this? 2) How fast will the protons be moving at their original positions if they are released when at 15fm?
Related questions
Question

Transcribed Image Text:The proton radius puzzle is an unanswered problem in physics relating to the size of the
proton. Historically the proton charge radius was measured by two independent methods, which
converged to a value of about 0.877 fm. This value was challenged by a 2010 experiment using a
third method, which produced a radius about 4% smaller than this, at 0.842 fm. New experimental
results reported in the fall of 2019 agree with the smaller measurement, and it has been proposed
that the puzzle is now solved, though this opinion is not yet universally held. This type of data is
crucial as we move close and closer to achieving fusion - a star on Earth. Fusion probability is
greatly enhanced when appropriate nuclei are brought close together, but mutual Coulomb repulsion
must be overcome. This can be done using the kinetic energy of high-temperature gas ions or by
accelerating the nuclei toward one another. If two hydrogen nuclei are 200pm apart and are then
moved closer together till they are 15fm apart - here strong nuclear force is negligible compared to
electrostatic repulsion.
1) How much energy is required for this?
2) How fast will the protons be moving at their original positions if they are released when at
15fm?
Expert Solution

Step 1
In order to convert the potential energy between protons into kinetic energy, we should change the potential energy between hydrogen nuclei, which is a proton.
Step by step
Solved in 2 steps
