Construct a 99% confidence interval to estimate the population proportion with a sample proportion equal to 0.90 and a sample size equal to 450. Click the icon to view a portion of the Cumulative Probabilities for the Standard Normal Distribution table. Cumulative probabilities to the left of z A 99% confidence interval estimates that the population proportion is between a lower limit of and an upper limit of (Round to three decimal places as needed.) Cumulative Probabilities for the Standard Normal Distribution Cumulative pobability Table entries eprsent the shaded arca in the figure SECOND DIGIT OF z FIRST DIGIT OF Z 0.01 0.03 004 0.05 0.06 0.07 0.08 0.09 0.00 0.02 05000 0.5040 0.5080 0,5120 0.5160 05199 0.5239 05279 0.319 05359 0.0 0.5478 0.5517 0.5557 0.5596 0.5636 05675 0.5714 05753 0.1 05398 0.5438 0.5832 0.5871 0.5948 0.5987 0.6026 0.6064 06103 06141 0.2 05793 0.5910 0.6255 0.6293 0.6331 06368 06406 0.6443 0.6480 0.6517 03 0.6179 0.6217 06591 0.6628 0.6700 0.6736 0.6772 0.6808 06844 0.6879 0.4 0.6554 0.6664 0.7054 0.7123 0.7157 0.7190 0.7224 0.5 0.6915 0.6950 0.6985 0.7019 0.7088 0.7324 0.7357 0.7422 0.7454 0.7486 0.7517 0.7549 0.7389 0.6 0.7257 0.7291 0.7642 0.7673 0.7734 07764 0.7704 0.7823 0.7852 0.7704 0.7 0.7580 0.7611 0.8023 0.8051 0.8078 0.8106 0.8133 08 0.7681 0.7910 0.7939 0.7967 0.7995 0.8264 0.8289 0.8315 08340 O.865 0.8389 08159 0.8186 0.8212 0.8238 09 0.8461 0.8485 0.8531 0.8554 0.8577 0.8599 0.8621 10 0.5413 0.8438 ORS08 0.8708 08729 0.8749 08770 08790 0.8810 0.8830 11 0.8643 0.8665 0.8686 09015

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
Construct a 99% confidence interval to estimate the population proportion with a sample portion equal to 0.90 and the sample size equal to 450.
Construct a 99% confidence interval to estimate the population proportion with a sample proportion equal to 0.90 and a sample size equal to 450.
Click the icon to view a portion of the Cumulative Probabilities for the Standard Normal Distribution table.
Cumulative probabilities to the left of z
A 99% confidence Interval estimates that the population proportion is,between a lower limit of and an upper limit of
(Round to three decimal places as needed.)
Cumulative Probabilities for the Standard Normal Distribution
Cumulative
pobability
Table entries
Rprset the shadad
arca in the figure
SECOND DIGIT OF z
FIRST DIGIT OF Z
0.01
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.00
0.02
05000
0.5040
0.5080
0,5120
0.5160
05199
0.5239
05279
0.319
05359
0.0
0.5636
0.5714
05753
0.1
05398
05438
0.5478
05517
0.5557
0.5596
05675
0.5832
0.5871
0.5948
0.5987
0.6026
0.6064
06103
06141
0.5910
0.2
05793
0.6293
0.6368
06406
0.6443
06480
06517
03
06179
0.6217
0.6255
0.6331
0.6554
06591
0.6628
0.6664
0.6700
0.6736
0.6772
0.6808
06844
0.6879
04
0.7123
0.7157
0.7190
0.7224
0.
0.6915
0.6950
0.6985
0.7019
0.7054
0.7088
0.7324 0.7357
0.7422
0.7454
0.7486
0.7517
0.7549
0.7389
0.6
0.7257
0.7291
0.7642
0.7673
0.7704
0.7734
0.7764
0.7794
0.7823
0.7852
07
0.7580
0.7611
0.8023
0.8051
0.8078
0,8106
0.8133
08
0.7881
0.7910
0.7939
0.7967
0.7995
0.8238
0.8264
0.8289
0.8315
08340
0.865
0.8389
08159
0.8186
0.8212
09
0.8485
0.8508
0.8531
0.8554
0.8577
0.8599
0.8621
LO
0.8413
0.8438
0.8461
0.8708
0.8729
0.8749
08770
0.8790
0.8810
08830
11
08643
0.8665
0.8686
0.8907
0.8925
0.8944
0.8962
0.8980
0.8997
0.9015
1.2
O.8840
0.s869
0.8888
0.0066
0.9082
0.9099
0911S
09131
0.9147
0.9162
09177
13
0.9032
0.9049
0.9292
0.9319
0.9222
0.9236
0.9251
0.9265
09279
0.9306
1.4
0.9192
0.9207
0.9382
0.0394
0.9406
0,0418
0.9429
0.9441
0.9332
0.0345
0.9357
0.9370
1.5
0.9484
0.9495
0.9505
0.9515
0.9525
0.9515
0.9545
0.9474
0.9452
0.9554
16
0.9463
0.9608
0.9616
0.9625
0.9633
0.9564
0.9573
0.9582
0.9591
0.9599
17
99603
0.9706
0.0671
0.9678
0.9686
0.9699
L8
0.9641
0.9649
0.9656
0.9664
0.0738
0.9750
09756
0.9761
0.0767
0.0744
0.9713 09719
0.9732
19
Transcribed Image Text:Construct a 99% confidence interval to estimate the population proportion with a sample proportion equal to 0.90 and a sample size equal to 450. Click the icon to view a portion of the Cumulative Probabilities for the Standard Normal Distribution table. Cumulative probabilities to the left of z A 99% confidence Interval estimates that the population proportion is,between a lower limit of and an upper limit of (Round to three decimal places as needed.) Cumulative Probabilities for the Standard Normal Distribution Cumulative pobability Table entries Rprset the shadad arca in the figure SECOND DIGIT OF z FIRST DIGIT OF Z 0.01 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.00 0.02 05000 0.5040 0.5080 0,5120 0.5160 05199 0.5239 05279 0.319 05359 0.0 0.5636 0.5714 05753 0.1 05398 05438 0.5478 05517 0.5557 0.5596 05675 0.5832 0.5871 0.5948 0.5987 0.6026 0.6064 06103 06141 0.5910 0.2 05793 0.6293 0.6368 06406 0.6443 06480 06517 03 06179 0.6217 0.6255 0.6331 0.6554 06591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 06844 0.6879 04 0.7123 0.7157 0.7190 0.7224 0. 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7324 0.7357 0.7422 0.7454 0.7486 0.7517 0.7549 0.7389 0.6 0.7257 0.7291 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852 07 0.7580 0.7611 0.8023 0.8051 0.8078 0,8106 0.8133 08 0.7881 0.7910 0.7939 0.7967 0.7995 0.8238 0.8264 0.8289 0.8315 08340 0.865 0.8389 08159 0.8186 0.8212 09 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 LO 0.8413 0.8438 0.8461 0.8708 0.8729 0.8749 08770 0.8790 0.8810 08830 11 08643 0.8665 0.8686 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 1.2 O.8840 0.s869 0.8888 0.0066 0.9082 0.9099 0911S 09131 0.9147 0.9162 09177 13 0.9032 0.9049 0.9292 0.9319 0.9222 0.9236 0.9251 0.9265 09279 0.9306 1.4 0.9192 0.9207 0.9382 0.0394 0.9406 0,0418 0.9429 0.9441 0.9332 0.0345 0.9357 0.9370 1.5 0.9484 0.9495 0.9505 0.9515 0.9525 0.9515 0.9545 0.9474 0.9452 0.9554 16 0.9463 0.9608 0.9616 0.9625 0.9633 0.9564 0.9573 0.9582 0.9591 0.9599 17 99603 0.9706 0.0671 0.9678 0.9686 0.9699 L8 0.9641 0.9649 0.9656 0.9664 0.0738 0.9750 09756 0.9761 0.0767 0.0744 0.9713 09719 0.9732 19
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman