Construct a 95% confidence interval of the population proportion using the given information. x=80, n=200 Click here to view the table of critical values. The lower bound is. The upper bound is (Round to three decimal places as needed.) Table of critical values Level of Confidence, (1a) 100% 90% 99% Area in Each Tail, Print 0.05 0.025 0.005 Done (...) Critical Value, 1.645 1.96 2.575 X

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question

hw 8 asap pleaseeee

Construct a 95% confidence interval of the population proportion using the given information.
x = 80, n = 200
Click here to view the table of critical values.
The lower bound is
The upper bound is
(Round to three decimal places as needed.)
Table of critical values
Level of Confidence,
(1 - a). 100%
90%
95%
99%
Print
Area in Each Tail,
0.05
0.025
0.005
Done
C
Critical Value, z
1.645
1.96
2.575
X
Transcribed Image Text:Construct a 95% confidence interval of the population proportion using the given information. x = 80, n = 200 Click here to view the table of critical values. The lower bound is The upper bound is (Round to three decimal places as needed.) Table of critical values Level of Confidence, (1 - a). 100% 90% 95% 99% Print Area in Each Tail, 0.05 0.025 0.005 Done C Critical Value, z 1.645 1.96 2.575 X
A survey of 2316 adults in a certain large country aged 18 and older conducted by a reputable polling organization found that 408 have donated blood in the past two years. Complete parts (a) through (c) below.
Click here to view the standard normal distribution table (page 1).
Click here to view the standard normal distribution table (page 2).
(a) Obtain a point estimate for the population proportion of adults in the country aged 18 and older who have donated blood in the past two years.
p= 0.176
(Round to three decimal places as needed.)
(b) Verify that the requirements for constructing a confidence interval about p are satisfied.
The sample
▼a simple random sample, the value of
(Round to three decimal places as needed.)
▼is, which is
Area
Standard Normal Distribution Table (page 1)
z
-3.4
-33
-3.2
-31
-3.0
-2.9
-2.8
-2.7
-2.6
-2.5
-2.4
-2.3
-2.2
-2.1
-2.0
-1.9
-1.8
-1.7
-1.6
-1.5
-1.4
-1.3
-1.2
-1.1
-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.2
-0.1
-0.0
z
0.00
0.01
0.0003 0.0003 0.0003
0.0005 0.0005 0.0005
0.0007 0.0007 0.0006
0.0010 0.0009 0.0009
0.0013
0.0013 0.0013
0.0019 0.0018 0.0018 0.0017
0.0026 0.0025 0.0024
0.0035 0.0034
0.0023
0.0032
0.0033
0.0047
0.0062
0.0082
0.0107
0.0139 0.0136
0.0179
0.0228
0.0287
0.0359
0.0446
0.0548
0.0668
0.0045
0.0060
0.0080
0.0104
0.3446
0.3821
0.4207
0.4602
0.5000
0.00
0.0537
0.0655
0.0793
0.0968 0.0951
0.1131
0.0808
0.1151
0.1357
0.1335
0.1587 0.1562
0.1841 0.1814
0.2119 0,2090
0.2420 0.2389
0.2743 0.2709
0.3050
0.3409
0.3085
0.0281
0.0351
0.0436
▼10, and the
0.02
0.0174 0.0170
0.0222 0.0217
0.4562
0.4960
0.01
0.0044
0.0059
G
0.0078
0.0102
0.0132
0.3372
0.3783 0.3745
0.4168 0.4129
Standard Normal Distribution
0.03
0.04
0.05
0.06
0.0003
0.0003
0.0003 0.0003 0.0003
0.0004 0.0004 0.0004 0.0004 0.0004
0.0006 0.0006 0.0006 0.0006 0.0005
0.0009 0.0008 0.0008 0.0008 0.0008
0.0012 0.0012 0.0011 0.0011 0.0011
0.0016
0.0016
0.0015 0.0015
0.0023 0.0022
0.0021
0.0021
0.0031
0.0030
0.0029
0.0028
0.0039
0.0038
0.0052
0.0051
0.4522
0.4920
0.02
0.0043
0.0057
0.0274
0.0344
0.0427
0.0526 0.0516
0.0643
0.0630
0.0075
0.0099
0.0129
0.0166
0.0212
0.0268
0.0336
0.0418
0.0778 0.0764
0.0934
0.1112
0.1314
0.1539
0.1788 0.1762
0.2061 0.2033
0.2358 0.2327
0.2676
0.3015
0.1292
0.1515
0.0749
0.0918 0.0901
0.1075
0.1271
0.1093
0.1492
0.0041
0.0055
0.3336
0.3707
0.4090
0.4483
0.4880
0.03
0.0162
0.0207
0.0073
0.0071
0.0069
0.0096 0.0094 0.0091
0.0125 0.0122 0.0119 0.0116
0.0158 0.0154 0.0150
0.0202 0.0197 0.0192
0.0262
0.0329
0.0409
0.0505
0.0618
0.2296
0.2643 0.2611
0.2946
0.2981
0.0040
0.0054
0.3300
0.3669
0.4052
0.4443
0.4840
0.04
0.0256
0.0322
0.0401
0.0495
0.0606
0.0735
0.0721
0.0708
0.0869
0.0853
0.0885
0.1056
0.1020
0.1423
0.1038
0.1251 0.1230 0.1210
0.1469
0.1446
0.1711 0.1685
0.2005 0.1977 0.1949
0.2266
0.2578
0.2912
0.1736
0.2206
0.2236
0.2546 0.2514
0.2877 0.2843
0.3264
0.3632
0.4013
0.07
0.4404
0.4801
0.05
0.3228
0.3594
0.3974
0.4364
0.4761
0.06
0.1660
0.1922
0.3192
0.3557
0.3936
0.08
0.0068
0.0066
0.0089 0.0087
0.0113
0.4325
0.4721
0.0003
0.0004
0.0250
0.0314
0.0244 0.0239
0.0307 0.0301
0.0392 0.0384 0.0375
0.0475
0.0485
0.0594
0.0582
0.07
0.0005
0.0007
0.0010
0.0014
0.0020
0.0027
0.0037
0.0049
0.0146
0.0188
0.0465
0.0571
0.0694
0.0838
0.1003
0.1190
0.1401
0.1635
0.1894
0.2177
0.2483
0.2810
0.3156
0.3520
0.3897
0.4286
0.4681
0.08
less than or equal to 5% of the
0.09
0.0002
0.0003
0.0005
0.0007
0.0010
0.0014
0.0019
0.0026
0.0036
0.0048
0.0064
0.0084
0.0110
0.0143
0.0183
0.0233
0.0294
0.0367
0.0455
0.0559
0.0681
0.0823
0.0985
0.1170
0.1379
0.1611
0.1867
0.2148
0.2451
0.2776
0.3121
0.3483
0.3859
0.4247
0.4641
0.09
Q
X
Transcribed Image Text:A survey of 2316 adults in a certain large country aged 18 and older conducted by a reputable polling organization found that 408 have donated blood in the past two years. Complete parts (a) through (c) below. Click here to view the standard normal distribution table (page 1). Click here to view the standard normal distribution table (page 2). (a) Obtain a point estimate for the population proportion of adults in the country aged 18 and older who have donated blood in the past two years. p= 0.176 (Round to three decimal places as needed.) (b) Verify that the requirements for constructing a confidence interval about p are satisfied. The sample ▼a simple random sample, the value of (Round to three decimal places as needed.) ▼is, which is Area Standard Normal Distribution Table (page 1) z -3.4 -33 -3.2 -31 -3.0 -2.9 -2.8 -2.7 -2.6 -2.5 -2.4 -2.3 -2.2 -2.1 -2.0 -1.9 -1.8 -1.7 -1.6 -1.5 -1.4 -1.3 -1.2 -1.1 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.2 -0.1 -0.0 z 0.00 0.01 0.0003 0.0003 0.0003 0.0005 0.0005 0.0005 0.0007 0.0007 0.0006 0.0010 0.0009 0.0009 0.0013 0.0013 0.0013 0.0019 0.0018 0.0018 0.0017 0.0026 0.0025 0.0024 0.0035 0.0034 0.0023 0.0032 0.0033 0.0047 0.0062 0.0082 0.0107 0.0139 0.0136 0.0179 0.0228 0.0287 0.0359 0.0446 0.0548 0.0668 0.0045 0.0060 0.0080 0.0104 0.3446 0.3821 0.4207 0.4602 0.5000 0.00 0.0537 0.0655 0.0793 0.0968 0.0951 0.1131 0.0808 0.1151 0.1357 0.1335 0.1587 0.1562 0.1841 0.1814 0.2119 0,2090 0.2420 0.2389 0.2743 0.2709 0.3050 0.3409 0.3085 0.0281 0.0351 0.0436 ▼10, and the 0.02 0.0174 0.0170 0.0222 0.0217 0.4562 0.4960 0.01 0.0044 0.0059 G 0.0078 0.0102 0.0132 0.3372 0.3783 0.3745 0.4168 0.4129 Standard Normal Distribution 0.03 0.04 0.05 0.06 0.0003 0.0003 0.0003 0.0003 0.0003 0.0004 0.0004 0.0004 0.0004 0.0004 0.0006 0.0006 0.0006 0.0006 0.0005 0.0009 0.0008 0.0008 0.0008 0.0008 0.0012 0.0012 0.0011 0.0011 0.0011 0.0016 0.0016 0.0015 0.0015 0.0023 0.0022 0.0021 0.0021 0.0031 0.0030 0.0029 0.0028 0.0039 0.0038 0.0052 0.0051 0.4522 0.4920 0.02 0.0043 0.0057 0.0274 0.0344 0.0427 0.0526 0.0516 0.0643 0.0630 0.0075 0.0099 0.0129 0.0166 0.0212 0.0268 0.0336 0.0418 0.0778 0.0764 0.0934 0.1112 0.1314 0.1539 0.1788 0.1762 0.2061 0.2033 0.2358 0.2327 0.2676 0.3015 0.1292 0.1515 0.0749 0.0918 0.0901 0.1075 0.1271 0.1093 0.1492 0.0041 0.0055 0.3336 0.3707 0.4090 0.4483 0.4880 0.03 0.0162 0.0207 0.0073 0.0071 0.0069 0.0096 0.0094 0.0091 0.0125 0.0122 0.0119 0.0116 0.0158 0.0154 0.0150 0.0202 0.0197 0.0192 0.0262 0.0329 0.0409 0.0505 0.0618 0.2296 0.2643 0.2611 0.2946 0.2981 0.0040 0.0054 0.3300 0.3669 0.4052 0.4443 0.4840 0.04 0.0256 0.0322 0.0401 0.0495 0.0606 0.0735 0.0721 0.0708 0.0869 0.0853 0.0885 0.1056 0.1020 0.1423 0.1038 0.1251 0.1230 0.1210 0.1469 0.1446 0.1711 0.1685 0.2005 0.1977 0.1949 0.2266 0.2578 0.2912 0.1736 0.2206 0.2236 0.2546 0.2514 0.2877 0.2843 0.3264 0.3632 0.4013 0.07 0.4404 0.4801 0.05 0.3228 0.3594 0.3974 0.4364 0.4761 0.06 0.1660 0.1922 0.3192 0.3557 0.3936 0.08 0.0068 0.0066 0.0089 0.0087 0.0113 0.4325 0.4721 0.0003 0.0004 0.0250 0.0314 0.0244 0.0239 0.0307 0.0301 0.0392 0.0384 0.0375 0.0475 0.0485 0.0594 0.0582 0.07 0.0005 0.0007 0.0010 0.0014 0.0020 0.0027 0.0037 0.0049 0.0146 0.0188 0.0465 0.0571 0.0694 0.0838 0.1003 0.1190 0.1401 0.1635 0.1894 0.2177 0.2483 0.2810 0.3156 0.3520 0.3897 0.4286 0.4681 0.08 less than or equal to 5% of the 0.09 0.0002 0.0003 0.0005 0.0007 0.0010 0.0014 0.0019 0.0026 0.0036 0.0048 0.0064 0.0084 0.0110 0.0143 0.0183 0.0233 0.0294 0.0367 0.0455 0.0559 0.0681 0.0823 0.0985 0.1170 0.1379 0.1611 0.1867 0.2148 0.2451 0.2776 0.3121 0.3483 0.3859 0.4247 0.4641 0.09 Q X
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps

Blurred answer
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman