Constants Ocean thermal energy conversion is a process that uses the temperature difference between the warm surface water of tropical oceans and the cold deepocean water to run a heat engine. (Figure 1) shows a typical decrease of temperature with depth below the surface in tropical oceans. In the heat engine, the warmer surface water Part A vaporizes a low-boiling-point fluid, such as ammonia. The of amr Compare the entropy change of the warmer water to that of the colder water during one cycle of the heat engine, assuming an ideal Carnot cycle. heat of vaporization of ammonia is 260 cal/g at 27° C, the surface-water temperature. The vapor is used to turn turbine and is then condensed back into a liquid by means of cold water brought from deep below the surface through a large intake pipe. A power plant producing 10 MW of useful power would require a cold seawater flow rate of about 30,000 kg/s. O The entropy does not change during one cycle in either case. The entropy of the warmer water decreases by more than the entropy of the colder water increases, because some of the heat removed from the warmer water goes to the work done by the engine. The entropy of the warmer water decreases by the same amount that the entropy of the colder water increases. Figure 1 of 1 The entropy of both increases, but the entropy of the colder water increases by more because its initial temperature is lower. 5 10 15 20 25 30 °C 100 Submit Request Answer 200 300 400 Provide Feedback Next > 500 600 700 800 900 1000 Depth (m)
Constants Ocean thermal energy conversion is a process that uses the temperature difference between the warm surface water of tropical oceans and the cold deepocean water to run a heat engine. (Figure 1) shows a typical decrease of temperature with depth below the surface in tropical oceans. In the heat engine, the warmer surface water Part A vaporizes a low-boiling-point fluid, such as ammonia. The of amr Compare the entropy change of the warmer water to that of the colder water during one cycle of the heat engine, assuming an ideal Carnot cycle. heat of vaporization of ammonia is 260 cal/g at 27° C, the surface-water temperature. The vapor is used to turn turbine and is then condensed back into a liquid by means of cold water brought from deep below the surface through a large intake pipe. A power plant producing 10 MW of useful power would require a cold seawater flow rate of about 30,000 kg/s. O The entropy does not change during one cycle in either case. The entropy of the warmer water decreases by more than the entropy of the colder water increases, because some of the heat removed from the warmer water goes to the work done by the engine. The entropy of the warmer water decreases by the same amount that the entropy of the colder water increases. Figure 1 of 1 The entropy of both increases, but the entropy of the colder water increases by more because its initial temperature is lower. 5 10 15 20 25 30 °C 100 Submit Request Answer 200 300 400 Provide Feedback Next > 500 600 700 800 900 1000 Depth (m)
Chapter3: The First Law Of Thermodynamics
Section: Chapter Questions
Problem 19P: A gas follows on an isothermal curve, where p is the pressure, V is the volume, b is a constant, and...
Related questions
Question
100%
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Recommended textbooks for you
College Physics
Physics
ISBN:
9781938168000
Author:
Paul Peter Urone, Roger Hinrichs
Publisher:
OpenStax College
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
College Physics
Physics
ISBN:
9781938168000
Author:
Paul Peter Urone, Roger Hinrichs
Publisher:
OpenStax College
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
College Physics
Physics
ISBN:
9781285737027
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning