Consider vector space V5 over field F with dimension 5. Consider linear mapping A E L(V5). Furthermore, assume that there are two mutually different non-zero vectors x, y E V5 satisfying Ax = Ay = 0. Then necessarily nul(A) = 2 rk(A) < 3 a · x + y E ker A, a E F

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Consider vector space V5 over field F with dimension 5. Consider linear mapping A E L(V5).
Furthermore, assume that there are two mutually different non-zero vectors x, y E V5 satisfying
Ax = Ay = 0. Then necessarily
nul(A) = 2
rk(A) < 3
a · x + y E ker A, a E F
Transcribed Image Text:Consider vector space V5 over field F with dimension 5. Consider linear mapping A E L(V5). Furthermore, assume that there are two mutually different non-zero vectors x, y E V5 satisfying Ax = Ay = 0. Then necessarily nul(A) = 2 rk(A) < 3 a · x + y E ker A, a E F
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Vector Space
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,