Consider the wff (Vx)[Ey)P(x. v) ^ (Jy)Qx. v)] → (Vx)Ey)[P(x. y) ^ Q(x. v)] a. Find an interpretation to prove that this wff is not valid. b. Find the flaw in the following "proof of this wff. 1. (Vx)[Ey)P(x, y) ^ Gy)Q(x, y)] hyp 2. (Vx)[P(x, a) ^ Q(x, a)] 3. (Vx)3y)[P(x, y) ^ Q(x, y)] 1, ei 2, eg

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Consider the wff
(Vx)[Ey)P(x. v) ^ (Jy)Qx. v)] → (Vx)Ey)[P(x. y) ^ Q(x. v)]
a. Find an interpretation to prove that this wff is not valid.
b. Find the flaw in the following "proof of this wff.
1. (Vx)[Ey)P(x, y) ^ Gy)Q(x, y)] hyp
2. (Vx)[P(x, a) ^ Q(x, a)]
3. (Vx)3y)[P(x, y) ^ Q(x, y)]
1, ei
2, eg
Transcribed Image Text:Consider the wff (Vx)[Ey)P(x. v) ^ (Jy)Qx. v)] → (Vx)Ey)[P(x. y) ^ Q(x. v)] a. Find an interpretation to prove that this wff is not valid. b. Find the flaw in the following "proof of this wff. 1. (Vx)[Ey)P(x, y) ^ Gy)Q(x, y)] hyp 2. (Vx)[P(x, a) ^ Q(x, a)] 3. (Vx)3y)[P(x, y) ^ Q(x, y)] 1, ei 2, eg
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,