Consider the system    x_1=x_2,                                      x_2=-(x_1+x_2)- h  (x_1+x_2) where h is continuously differentiable and zh(z) > 0 for all  z not equal to 0. Using the variable gradient method, find a Lyapunov function that shows that the origin is globally asymptotically stable.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Consider the system    x_1=x_2,

                                     x_2=-(x_1+x_2)- h  (x_1+x_2)

where h is continuously differentiable and zh(z) > 0 for all  z not equal to 0. Using the variable

gradient method, find a Lyapunov function that shows that the origin is globally

asymptotically stable.

Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,