Consider the system in R² given in polar coordinates by fr = r(1 — r²) 8 = 1. (a) Find all limit cycles and all equilibria. (b) Determine stability of all limit cycles and equilibria.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
3. Consider the system in R² given in polar coordinates by
r = r(1 — r²)
0 = 1.
(a) Find all limit cycles and all equilibria.
(b) Determine stability of all limit cycles and equilibria.
Transcribed Image Text:3. Consider the system in R² given in polar coordinates by r = r(1 — r²) 0 = 1. (a) Find all limit cycles and all equilibria. (b) Determine stability of all limit cycles and equilibria.
Expert Solution
Step 1: Analysis and Introduction

Given system of equations:

r with dot on top equals r open parentheses 1 minus r squared close parentheses
theta with dot on top equals 1

To find:

a) The limit cycles and all equilibria.

b) Stability of the limit cycle and all equilibria.

Solution process:

Limit cycle can be identified by solving the differential equations. 

Stability of the limit cycles can be identified using the limit of solution on r approaches to infinity.

Equilibrium solutions can be identified by equating the derivative to zero.

Stability of the equilibria can be identified by finding the eigenvalues of the Jacobian matrix.

Concept used:

If the eigenvalues are negative, then the node is stable node at equilibria, otherwise unstable.

If the eigenvalues are alternative with one as negative, then the node as saddle points.

If the eigenvalues are non-negative and Lyopunov function exists, then the point is stable node. Otherwise it is unstable.

Lyopunov function exists only if there exists a finite number of limit cycles.

Integration formula:

table row cell integral fraction numerator f apostrophe open parentheses x close parentheses over denominator f open parentheses x close parentheses end fraction d x end cell equals cell ln open vertical bar f open parentheses x close parentheses close vertical bar plus c end cell row cell integral d x end cell equals cell x plus c end cell end table

Here, c is an integrating constant.

Differentiation formula:

fraction numerator d over denominator d x end fraction open parentheses x to the power of n close parentheses equals n x to the power of n minus 1 end exponent, for any real n

Logarithmic law:

table row cell ln open parentheses m n close parentheses end cell equals cell ln open parentheses m close parentheses plus ln open parentheses n close parentheses end cell row cell ln open parentheses m over n close parentheses end cell equals cell ln open parentheses m close parentheses minus ln open parentheses n close parentheses end cell row cell ln open parentheses m to the power of n close parentheses end cell equals cell n ln open parentheses m close parentheses end cell row cell ln open parentheses e to the power of x close parentheses end cell equals cell e to the power of ln open parentheses x close parentheses end exponent equals x end cell end table

steps

Step by step

Solved in 6 steps with 61 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,