Consider the semicircle r(t) = a cos(t)i + asin(1)j with 0 ≤ ≤ and a > 0. For a given vector field F, the flux across r(t) is is [(F.N) ds. Σ dt. (a) ds = a (b) N= If our vector field is F₁ = 7xi - 4yj, then we have the flux being (c) F₁ (r(t)) <7'a*cos(t), -4'a'sin(t)> (F₁-N) ds = (d) As such, Σ (e) F₂(r(t)) = <3'a'cos(t), 7(a*cos(t)-a*sin(t))> (1) As such, (F₂N) ds -2pia^2 Σ Now, if our vector field is F₂ = 3xi +7(x - y)j, then we have the flux being (F₂-N)ds. Σ [(F₁-N)ds. Σ W
Consider the semicircle r(t) = a cos(t)i + asin(1)j with 0 ≤ ≤ and a > 0. For a given vector field F, the flux across r(t) is is [(F.N) ds. Σ dt. (a) ds = a (b) N= If our vector field is F₁ = 7xi - 4yj, then we have the flux being (c) F₁ (r(t)) <7'a*cos(t), -4'a'sin(t)> (F₁-N) ds = (d) As such, Σ (e) F₂(r(t)) = <3'a'cos(t), 7(a*cos(t)-a*sin(t))> (1) As such, (F₂N) ds -2pia^2 Σ Now, if our vector field is F₂ = 3xi +7(x - y)j, then we have the flux being (F₂-N)ds. Σ [(F₁-N)ds. Σ W
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![Consider the semicircle r(t) = a cos(t)i + a sin(1)j with 0 ≤ ≤ and a > 0. For a given vector field F, the flux across r(t) is
is
(a) ds = a
(b) N= <cos(t), sin(t)>
If our vector field is F₁ = 7xi-4yj, then we have the flux being
(d) As such,
Σ dt.
(F₁-N) ds =
(c) F₁ (r(t)) <7'a*cos(t), -4*a* sin(t)>
· SCF₁-1
Now, if our vector field is F₂ = 3xi +7(x - y)j, then we have the flux being (F₂-N)ds.
(e) F₂ (r(t)) = <3*a*cos(t), 7(a*cos(t)-a*sin(t))>
Σ
(1) As such, (F₂N) ds -2pia^2
Σ
Σ
[(F₁-N)ds.
Σ
W
-N) ds.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fbb5b5adf-d6c6-47fa-b7e7-07b25291b0fe%2F2eece027-36c7-49b0-a62b-7b83ba055abc%2F98dvmz_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Consider the semicircle r(t) = a cos(t)i + a sin(1)j with 0 ≤ ≤ and a > 0. For a given vector field F, the flux across r(t) is
is
(a) ds = a
(b) N= <cos(t), sin(t)>
If our vector field is F₁ = 7xi-4yj, then we have the flux being
(d) As such,
Σ dt.
(F₁-N) ds =
(c) F₁ (r(t)) <7'a*cos(t), -4*a* sin(t)>
· SCF₁-1
Now, if our vector field is F₂ = 3xi +7(x - y)j, then we have the flux being (F₂-N)ds.
(e) F₂ (r(t)) = <3*a*cos(t), 7(a*cos(t)-a*sin(t))>
Σ
(1) As such, (F₂N) ds -2pia^2
Σ
Σ
[(F₁-N)ds.
Σ
W
-N) ds.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 4 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Similar questions
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)