Consider the semicircle r(t) = a cos(t)i + a sin(t)j with 0 0. For a given vector field F, the flux across r(t) is (F N) d: (a) ds = Σ dt (b) N = Σ If our vector field is F1 = 9xi 6yj, then we have the flux being (F1 N)ds. (c) F1(r(t)) Σ (d) As such, (F1 N) ds = Σ Now, if our vector field is F2 = 5xi + 3(x - y)j, then we have the flux being| (F2 N)ds.
Consider the semicircle r(t) = a cos(t)i + a sin(t)j with 0 0. For a given vector field F, the flux across r(t) is (F N) d: (a) ds = Σ dt (b) N = Σ If our vector field is F1 = 9xi 6yj, then we have the flux being (F1 N)ds. (c) F1(r(t)) Σ (d) As such, (F1 N) ds = Σ Now, if our vector field is F2 = 5xi + 3(x - y)j, then we have the flux being| (F2 N)ds.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![Consider the semicircle r(t)
a cos(t)i + a sin(t)j with 0<t<r and a > 0. For a given vector field F, the flux across r(t) is
(F N) ds.
(a) ds =
Σ dt.
(b) N =
Σ
If our vector field is F1 = 9xi – 6yj, then we have the flux being
(F1 N)ds.
(c) F1(r(t))
Σ
(d) As such,
F1 N) ds =
Σ
Now, if our vector field is F2 = 5xi + 3( – y)j, then we have the flux being
(F2 N)ds.
(e) F2(r(t))
Σ
!!
(f) As such,
(F2 N) ds =
Σ](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F0695e04c-6177-4dae-ae8e-62e62853c8ae%2F64afe94d-f7b7-4fb3-9807-b938ede48948%2Fhynlvgd_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Consider the semicircle r(t)
a cos(t)i + a sin(t)j with 0<t<r and a > 0. For a given vector field F, the flux across r(t) is
(F N) ds.
(a) ds =
Σ dt.
(b) N =
Σ
If our vector field is F1 = 9xi – 6yj, then we have the flux being
(F1 N)ds.
(c) F1(r(t))
Σ
(d) As such,
F1 N) ds =
Σ
Now, if our vector field is F2 = 5xi + 3( – y)j, then we have the flux being
(F2 N)ds.
(e) F2(r(t))
Σ
!!
(f) As such,
(F2 N) ds =
Σ
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 4 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)