Consider the quadratic form F(X₁, X₂, X 3) = 25X² +34X² +41 X ² Write F - 24 X₂ X3 al F= [X² [A] [X WA b) Find a set of orthonormal eigenvectors for A where A is a symmetric matric 4) With the results of (b), form a normalized modal matri [Q] and determine the product [P][Q]

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Quadratic Form Analysis**

Consider the quadratic form:

\[ F(x_1, x_2, x_3) = 25x_1^2 + 34x_2^2 + 41x_3^2 - 24x_2x_3 \]

a) Write \( F \) as:

\[ F = \begin{bmatrix} x \end{bmatrix}^T \begin{bmatrix} A \end{bmatrix} \begin{bmatrix} x \end{bmatrix} \]

   where \( A \) is a symmetric matrix.

b) Find a set of orthonormal eigenvectors for \( A \).

c) With the results of (b), form a normalized modal matrix \([Q]\) and determine the product \([Q][Q]^T\).
Transcribed Image Text:**Quadratic Form Analysis** Consider the quadratic form: \[ F(x_1, x_2, x_3) = 25x_1^2 + 34x_2^2 + 41x_3^2 - 24x_2x_3 \] a) Write \( F \) as: \[ F = \begin{bmatrix} x \end{bmatrix}^T \begin{bmatrix} A \end{bmatrix} \begin{bmatrix} x \end{bmatrix} \] where \( A \) is a symmetric matrix. b) Find a set of orthonormal eigenvectors for \( A \). c) With the results of (b), form a normalized modal matrix \([Q]\) and determine the product \([Q][Q]^T\).
Expert Solution
Step 1: Step 1

The given quadratic form is given by 

 F(x1,x2,x) = 25x subscript 1 superscript 2 + 34x subscript 2 superscript 2 + 41x subscript 3 superscript 2 - 24x subscript 2 x subscript 3

 

trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 5 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,