Consider the points A (10, 9) and B (0, – 7). Find the vector AB. АВ

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Problem Statement:**

Consider the points \( A = (10, 9) \) and \( B = (0, -7) \). Find the vector \( \vec{AB} \).

\[ \vec{AB} = \, \underline{\qquad\qquad} \]

**Solution Steps:**

To find the vector \( \vec{AB} \), we subtract the coordinates of point \( A \) from the coordinates of point \( B \).

Given:

- \( A = (10, 9) \)
- \( B = (0, -7) \)

The formula for the vector \( \vec{AB} \) is:

\[ \vec{AB} = (x_2 - x_1, y_2 - y_1) \]

Substituting the given points:

\[ \vec{AB} = (0 - 10, -7 - 9) \]

Calculating each component:

- \( x \)-component: \( 0 - 10 = -10 \)
- \( y \)-component: \( -7 - 9 = -16 \)

Therefore, the vector \( \vec{AB} \) is:

\[ \vec{AB} = (-10, -16) \]
Transcribed Image Text:**Problem Statement:** Consider the points \( A = (10, 9) \) and \( B = (0, -7) \). Find the vector \( \vec{AB} \). \[ \vec{AB} = \, \underline{\qquad\qquad} \] **Solution Steps:** To find the vector \( \vec{AB} \), we subtract the coordinates of point \( A \) from the coordinates of point \( B \). Given: - \( A = (10, 9) \) - \( B = (0, -7) \) The formula for the vector \( \vec{AB} \) is: \[ \vec{AB} = (x_2 - x_1, y_2 - y_1) \] Substituting the given points: \[ \vec{AB} = (0 - 10, -7 - 9) \] Calculating each component: - \( x \)-component: \( 0 - 10 = -10 \) - \( y \)-component: \( -7 - 9 = -16 \) Therefore, the vector \( \vec{AB} \) is: \[ \vec{AB} = (-10, -16) \]
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,