Consider the ODE y' + tan(ax)y = sin(ax), where a is a nonzero real number. Find an integrating factor without using an exponential, but instead, a trig function. Then solve. If you used the standard method for finding an integratin factor, would anything in your solution have changed?
Consider the ODE y' + tan(ax)y = sin(ax), where a is a nonzero real number. Find an integrating factor without using an exponential, but instead, a trig function. Then solve. If you used the standard method for finding an integratin factor, would anything in your solution have changed?
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
I'm having a hard time finding an
![(a) Consider the ODE y' + tan(ax)y = sin(ax), where a is a nonzero real number. Find an
integrating factor without using an exponential, but instead, a trig function. Then solve.
If
you
used the standard method for finding an integratin factor, would anything in your
solution have changed?
(b) Repeat the steps in part (a) for the ODE y' + cot(ax)y – sin(ax) = 0.
(c) Do you see a pattern? Can you come up with another example of a linear ODE that can
be solved with an integrating factor found without using the standard formula? If so,
does using the standard formula result in the same integrating factor?](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F2ae14ade-6f74-4154-97ef-b44e7d0350a4%2Fc100908d-1d80-4d9e-ab70-fefe20fc7292%2Fxxuv8hm_processed.png&w=3840&q=75)
Transcribed Image Text:(a) Consider the ODE y' + tan(ax)y = sin(ax), where a is a nonzero real number. Find an
integrating factor without using an exponential, but instead, a trig function. Then solve.
If
you
used the standard method for finding an integratin factor, would anything in your
solution have changed?
(b) Repeat the steps in part (a) for the ODE y' + cot(ax)y – sin(ax) = 0.
(c) Do you see a pattern? Can you come up with another example of a linear ODE that can
be solved with an integrating factor found without using the standard formula? If so,
does using the standard formula result in the same integrating factor?
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 6 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)