Consider the matrix B 1 is given by where A₁ = A₂ = - 1114 -5 -5 3-1 1 3 3 2 -3 3 5 -4 det (A₁) + 22 Then det (B) using the cofactor expansion along column det (A₂)+ det(A3)+ 4 det (A4)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%

See image below and A3 and A4 not shown in image is also a 3 *3 matrix

Consider the matrix \( B = \begin{bmatrix} 1 & 1 & 1 & 4 \\ -5 & -5 & 3 & -1 \\ 1 & 3 & 3 & 2 \\ -3 & 3 & 5 & -4 \end{bmatrix} \). Then, \(\det(B)\) using the cofactor expansion along column 1 is given by 

\[ \boxed{} \, \det(A_1) + \boxed{} \, \det(A_2) + \boxed{} \, \det(A_3) + \boxed{} \, \det(A_4) \]

where 

\[ A_1 = \begin{bmatrix} \boxed{} & \boxed{} & \boxed{} \\ \boxed{} & \boxed{} & \boxed{} \\ \boxed{} & \boxed{} & \boxed{} \end{bmatrix} \]

\[ A_2 = \begin{bmatrix} \boxed{} & \boxed{} & \boxed{} \\ \boxed{} & \boxed{} & \boxed{} \\ \boxed{} & \boxed{} & \boxed{} \end{bmatrix} \]

The matrices \( A_3 \) and \( A_4 \) are similarly structured with blank spaces for their elements.
Transcribed Image Text:Consider the matrix \( B = \begin{bmatrix} 1 & 1 & 1 & 4 \\ -5 & -5 & 3 & -1 \\ 1 & 3 & 3 & 2 \\ -3 & 3 & 5 & -4 \end{bmatrix} \). Then, \(\det(B)\) using the cofactor expansion along column 1 is given by \[ \boxed{} \, \det(A_1) + \boxed{} \, \det(A_2) + \boxed{} \, \det(A_3) + \boxed{} \, \det(A_4) \] where \[ A_1 = \begin{bmatrix} \boxed{} & \boxed{} & \boxed{} \\ \boxed{} & \boxed{} & \boxed{} \\ \boxed{} & \boxed{} & \boxed{} \end{bmatrix} \] \[ A_2 = \begin{bmatrix} \boxed{} & \boxed{} & \boxed{} \\ \boxed{} & \boxed{} & \boxed{} \\ \boxed{} & \boxed{} & \boxed{} \end{bmatrix} \] The matrices \( A_3 \) and \( A_4 \) are similarly structured with blank spaces for their elements.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,