Consider the matrix A = a 11 A12 A13 d14 a21 a22 a23 a24) show that the product L(X)=AX is a linear transformation, where šER. a22 a23 d24/
Consider the matrix A = a 11 A12 A13 d14 a21 a22 a23 a24) show that the product L(X)=AX is a linear transformation, where šER. a22 a23 d24/
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Please show work
![**Matrix and Linear Transformation Explanation**
Consider the matrix \( A \):
\[
A = \begin{pmatrix}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24}
\end{pmatrix}
\]
We need to show that the product transformation \( \mathbf{L}(\vec{x}) = A \vec{x} \) is a linear transformation, where \( \vec{x} \in \mathbb{R}^4 \).
**Explanation:**
1. **Matrix Representation:**
- The matrix \( A \) is a \( 2 \times 4 \) matrix consisting of elements \( a_{ij} \), where \( i \) represents the row and \( j \) represents the column.
2. **Transformation Description:**
- The function \( \mathbf{L}(\vec{x}) \) represents the transformation of a vector \( \vec{x} \) in the space \( \mathbb{R}^4 \) by the matrix \( A \).
3. **Linear Transformation Criteria:**
- A transformation is linear if it satisfies both additivity and scalar multiplication:
- **Additivity:** \( \mathbf{L}(\vec{x} + \vec{y}) = \mathbf{L}(\vec{x}) + \mathbf{L}(\vec{y}) \)
- **Scalar Multiplication:** \( \mathbf{L}(c \vec{x}) = c \mathbf{L}(\vec{x}) \) for any scalar \( c \).
4. **Application:**
- Showing \( \mathbf{L}(\vec{x}) \) is linear involves verifying these properties using matrix multiplication with vector inputs.
By demonstrating these properties, you can establish that \( \mathbf{L}(\vec{x}) = A \vec{x} \) is indeed a linear transformation.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F486b24c8-8b02-4a6d-85d6-6aef3a827ba3%2F6e50b90c-1382-4b26-90b6-3de7d5307581%2Fx8d67io_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Matrix and Linear Transformation Explanation**
Consider the matrix \( A \):
\[
A = \begin{pmatrix}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24}
\end{pmatrix}
\]
We need to show that the product transformation \( \mathbf{L}(\vec{x}) = A \vec{x} \) is a linear transformation, where \( \vec{x} \in \mathbb{R}^4 \).
**Explanation:**
1. **Matrix Representation:**
- The matrix \( A \) is a \( 2 \times 4 \) matrix consisting of elements \( a_{ij} \), where \( i \) represents the row and \( j \) represents the column.
2. **Transformation Description:**
- The function \( \mathbf{L}(\vec{x}) \) represents the transformation of a vector \( \vec{x} \) in the space \( \mathbb{R}^4 \) by the matrix \( A \).
3. **Linear Transformation Criteria:**
- A transformation is linear if it satisfies both additivity and scalar multiplication:
- **Additivity:** \( \mathbf{L}(\vec{x} + \vec{y}) = \mathbf{L}(\vec{x}) + \mathbf{L}(\vec{y}) \)
- **Scalar Multiplication:** \( \mathbf{L}(c \vec{x}) = c \mathbf{L}(\vec{x}) \) for any scalar \( c \).
4. **Application:**
- Showing \( \mathbf{L}(\vec{x}) \) is linear involves verifying these properties using matrix multiplication with vector inputs.
By demonstrating these properties, you can establish that \( \mathbf{L}(\vec{x}) = A \vec{x} \) is indeed a linear transformation.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)