Consider the matrix A = a 11 A12 A13 d14 a21 a22 a23 a24) show that the product L(X)=AX is a linear transformation, where šER. a22 a23 d24/

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Please show work

**Matrix and Linear Transformation Explanation**

Consider the matrix \( A \):

\[
A = \begin{pmatrix} 
a_{11} & a_{12} & a_{13} & a_{14} \\ 
a_{21} & a_{22} & a_{23} & a_{24} 
\end{pmatrix}
\]

We need to show that the product transformation \( \mathbf{L}(\vec{x}) = A \vec{x} \) is a linear transformation, where \( \vec{x} \in \mathbb{R}^4 \). 

**Explanation:**

1. **Matrix Representation:**  
   - The matrix \( A \) is a \( 2 \times 4 \) matrix consisting of elements \( a_{ij} \), where \( i \) represents the row and \( j \) represents the column.
   
2. **Transformation Description:**  
   - The function \( \mathbf{L}(\vec{x}) \) represents the transformation of a vector \( \vec{x} \) in the space \( \mathbb{R}^4 \) by the matrix \( A \).

3. **Linear Transformation Criteria:**  
   - A transformation is linear if it satisfies both additivity and scalar multiplication:
     - **Additivity:** \( \mathbf{L}(\vec{x} + \vec{y}) = \mathbf{L}(\vec{x}) + \mathbf{L}(\vec{y}) \)
     - **Scalar Multiplication:** \( \mathbf{L}(c \vec{x}) = c \mathbf{L}(\vec{x}) \) for any scalar \( c \).

4. **Application:** 
   - Showing \( \mathbf{L}(\vec{x}) \) is linear involves verifying these properties using matrix multiplication with vector inputs.

By demonstrating these properties, you can establish that \( \mathbf{L}(\vec{x}) = A \vec{x} \) is indeed a linear transformation.
Transcribed Image Text:**Matrix and Linear Transformation Explanation** Consider the matrix \( A \): \[ A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \end{pmatrix} \] We need to show that the product transformation \( \mathbf{L}(\vec{x}) = A \vec{x} \) is a linear transformation, where \( \vec{x} \in \mathbb{R}^4 \). **Explanation:** 1. **Matrix Representation:** - The matrix \( A \) is a \( 2 \times 4 \) matrix consisting of elements \( a_{ij} \), where \( i \) represents the row and \( j \) represents the column. 2. **Transformation Description:** - The function \( \mathbf{L}(\vec{x}) \) represents the transformation of a vector \( \vec{x} \) in the space \( \mathbb{R}^4 \) by the matrix \( A \). 3. **Linear Transformation Criteria:** - A transformation is linear if it satisfies both additivity and scalar multiplication: - **Additivity:** \( \mathbf{L}(\vec{x} + \vec{y}) = \mathbf{L}(\vec{x}) + \mathbf{L}(\vec{y}) \) - **Scalar Multiplication:** \( \mathbf{L}(c \vec{x}) = c \mathbf{L}(\vec{x}) \) for any scalar \( c \). 4. **Application:** - Showing \( \mathbf{L}(\vec{x}) \) is linear involves verifying these properties using matrix multiplication with vector inputs. By demonstrating these properties, you can establish that \( \mathbf{L}(\vec{x}) = A \vec{x} \) is indeed a linear transformation.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,