Consider the matrix A = 1 1 P = Let x = 1 √2 1 √2 0 -|-~| 1 √6 1 Compute [x]. √6 2 √6 1/11/11/1 I 2 -1 -1 2 and D = " which can be orthogonally diagonalized A = PDPT, where 300 030 00 0 [] 3 . Let 3 be the basis for R³ given by the columns of P.
Consider the matrix A = 1 1 P = Let x = 1 √2 1 √2 0 -|-~| 1 √6 1 Compute [x]. √6 2 √6 1/11/11/1 I 2 -1 -1 2 and D = " which can be orthogonally diagonalized A = PDPT, where 300 030 00 0 [] 3 . Let 3 be the basis for R³ given by the columns of P.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![Consider the matrix \( A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} \), which can be orthogonally diagonalized \( A = P D P^T \), where
\[ P = \begin{bmatrix}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \\
0 & \frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{3}}
\end{bmatrix} \]
and
\[ D = \begin{bmatrix}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 0
\end{bmatrix}. \]
Let \(\mathbf{x} = \begin{bmatrix} -4 \\ 3 \\ -1 \end{bmatrix}\). Let \(\mathcal{B}\) be the basis for \(\mathbb{R}^3\) given by the columns of \(P\).
Compute \([\mathbf{x}]_{\mathcal{B}}\).
\[ \begin{bmatrix} \\ \\ \end{bmatrix} \]](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fab289986-80a9-4865-81ee-c0ba3a526505%2Fc5e0e2e4-f806-4f9d-8745-e99db1ddae93%2Fjb7yfa_processed.png&w=3840&q=75)
Transcribed Image Text:Consider the matrix \( A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} \), which can be orthogonally diagonalized \( A = P D P^T \), where
\[ P = \begin{bmatrix}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \\
0 & \frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{3}}
\end{bmatrix} \]
and
\[ D = \begin{bmatrix}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 0
\end{bmatrix}. \]
Let \(\mathbf{x} = \begin{bmatrix} -4 \\ 3 \\ -1 \end{bmatrix}\). Let \(\mathcal{B}\) be the basis for \(\mathbb{R}^3\) given by the columns of \(P\).
Compute \([\mathbf{x}]_{\mathcal{B}}\).
\[ \begin{bmatrix} \\ \\ \end{bmatrix} \]
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)