Consider the matrix A = 1 1 P = Let x = 1 √2 1 √2 0 -|-~| 1 √6 1 Compute [x]. √6 2 √6 1/11/11/1 I 2 -1 -1 2 and D = " which can be orthogonally diagonalized A = PDPT, where 300 030 00 0 [] 3 . Let 3 be the basis for R³ given by the columns of P.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Consider the matrix \( A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} \), which can be orthogonally diagonalized \( A = P D P^T \), where

\[ P = \begin{bmatrix} 
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \\ 
0 & \frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{3}} 
\end{bmatrix} \]

and 

\[ D = \begin{bmatrix} 
3 & 0 & 0 \\ 
0 & 3 & 0 \\ 
0 & 0 & 0 
\end{bmatrix}. \]

Let \(\mathbf{x} = \begin{bmatrix} -4 \\ 3 \\ -1 \end{bmatrix}\). Let \(\mathcal{B}\) be the basis for \(\mathbb{R}^3\) given by the columns of \(P\).

Compute \([\mathbf{x}]_{\mathcal{B}}\).

\[ \begin{bmatrix} \\ \\ \end{bmatrix} \]
Transcribed Image Text:Consider the matrix \( A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} \), which can be orthogonally diagonalized \( A = P D P^T \), where \[ P = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \end{bmatrix} \] and \[ D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 0 \end{bmatrix}. \] Let \(\mathbf{x} = \begin{bmatrix} -4 \\ 3 \\ -1 \end{bmatrix}\). Let \(\mathcal{B}\) be the basis for \(\mathbb{R}^3\) given by the columns of \(P\). Compute \([\mathbf{x}]_{\mathcal{B}}\). \[ \begin{bmatrix} \\ \\ \end{bmatrix} \]
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,