Consider the linear transformation T: RR whose matrix A relative to the standard basis is given. A = [ ²² ] (a) Find the eigenvalues of A. (Enter your answers from smallest to largest.) - (3₁ 3.4 (21, 2₂) = (b) Find a basis for each of the corresponding eigenspaces. (-2,1) B₁ = B₂ = A' = X (c) Find the matrix A' for T relative to the basis B', where B' is made up of the basis vectors found in part (b).

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Linear Transformation and Eigenvalues**

Consider the linear transformation \( T: \mathbb{R}^n \to \mathbb{R}^n \) whose matrix \( A \) relative to the standard basis is given by:

\[
A = \begin{bmatrix} 2 & 2 \\ -1 & 5 \end{bmatrix}
\]

**(a) Finding Eigenvalues**

Find the eigenvalues of \( A \). (Enter your answers from smallest to largest.)

\[
(\lambda_1, \lambda_2) = (3, 4) \quad \checkmark
\]

**(b) Basis for Eigenspaces**

Find a basis for each of the corresponding eigenspaces.

\[
B_1 = \left\{ \begin{pmatrix} -2 \\ 1 \end{pmatrix} \right\} \quad \textcolor{red}{\text{✗}}
\]

\[
B_2 = \left\{ \begin{pmatrix} \, \, \end{pmatrix} \right\}
\]

**(c) Finding the Matrix \( A' \)**

Find the matrix \( A' \) for \( T \) relative to the basis \( B' \), where \( B' \) is made up of the basis vectors found in part (b).

\[
A' = \begin{bmatrix} \, & \, \\ \, & \, \end{bmatrix} \quad \textcolor{green}{\Downarrow \, \Uparrow}
\]
Transcribed Image Text:**Linear Transformation and Eigenvalues** Consider the linear transformation \( T: \mathbb{R}^n \to \mathbb{R}^n \) whose matrix \( A \) relative to the standard basis is given by: \[ A = \begin{bmatrix} 2 & 2 \\ -1 & 5 \end{bmatrix} \] **(a) Finding Eigenvalues** Find the eigenvalues of \( A \). (Enter your answers from smallest to largest.) \[ (\lambda_1, \lambda_2) = (3, 4) \quad \checkmark \] **(b) Basis for Eigenspaces** Find a basis for each of the corresponding eigenspaces. \[ B_1 = \left\{ \begin{pmatrix} -2 \\ 1 \end{pmatrix} \right\} \quad \textcolor{red}{\text{✗}} \] \[ B_2 = \left\{ \begin{pmatrix} \, \, \end{pmatrix} \right\} \] **(c) Finding the Matrix \( A' \)** Find the matrix \( A' \) for \( T \) relative to the basis \( B' \), where \( B' \) is made up of the basis vectors found in part (b). \[ A' = \begin{bmatrix} \, & \, \\ \, & \, \end{bmatrix} \quad \textcolor{green}{\Downarrow \, \Uparrow} \]
Expert Solution
steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,