Consider the Laguerre polynomials defined on the interval [0, ∞o) obeying the orthogonality relations f dx e-Ln(x)Lm(x) = (n!)√n,m Evaluate the integral (65² o dx e-xL₁(x) L₁(x) using the recurrence relation Ln+1(x) − (2n +1 − x) Ln(x) + n² Ln_1(x). Hint: Write L5(x) or xL6(x) in terms of Laguerre polynomials only.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%

please do not provide solution in image format thank you!

Consider the Laguerre polynomials defined on the interval [0, ∞) obeying the orthogonality relations
f dx e-Ln(x)Lm(x) = (n!)√n,m
Evaluate the integral
(61)² So dx e-¹xL5(x) L₁(x)
using the recurrence relation
Ln+1(x) − (2n + 1 − x) Ln(x) + n² Ln−1(x).
Hint: Write L5(x) or xL₁(x) in terms of Laguerre polynomials only.
Transcribed Image Text:Consider the Laguerre polynomials defined on the interval [0, ∞) obeying the orthogonality relations f dx e-Ln(x)Lm(x) = (n!)√n,m Evaluate the integral (61)² So dx e-¹xL5(x) L₁(x) using the recurrence relation Ln+1(x) − (2n + 1 − x) Ln(x) + n² Ln−1(x). Hint: Write L5(x) or xL₁(x) in terms of Laguerre polynomials only.
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,