Consider the initial value problem y′′+γy′+y=kδ(t−1),y(0)=0,y′(0)=0 where k is the magnitude of an impulse at t = 1, and γ is the damping coefficient (or resistance). Determine how k1 varies as γ decreases. What is the value of k1 when γ = 0?

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Consider the initial value problem

y′′+γy′+y=kδ(t−1),y(0)=0,y′(0)=0

where k is the magnitude of an impulse at t = 1, and γ is the damping coefficient (or resistance).

Determine how k1 varies as γ decreases. What is the value of k1 when γ = 0?

Expert Solution
Step 1

Given : y''+γy'+y=kδt-1  ,  y0=0 , y'0=0

To Find : k1γ=0

Step 2

y''+γy'+y=kδt-1   .  .  . 1

Take the Laplace transform of both side of (1) 

Ly''+γy'+y=Lkδt-1 Ly''}+γL{y'}+L{y=Lkδt-1 s2Ys-sy0-y'0+γsYs-y0+Ys=k0e-st δt-1dt

Since y0=0 , y'0=0

s2Ys+γsYs+Ys=ke-s1Ys=ke-ss2+γs+1Ys=k1s2+γs+γ24+1-γ24e-s      =k1s2+γ22+4-γ24e-s Ys=2k4-γ24-γ22s2+γ22+4-γ24e-s

Step 3

Take the inverse Laplace transform to get yt

yt=2k4-γ2e-γt-12 sin4-γ22t-1Ht-1

For Value of t>1 the Heaviside function is 1

yt=2k4-γ2e-γt-12 sin4-γ22t-1  , t>1

Take derivative and set it equal to zero to find the value of t for which y(t) is maximum

y't=γk4-γ2e-γt-12 sin4-γ22t-1+ke-γt-12 cos4-γ22t-1=0tan4-γ22t-1=4-γ2γ

trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 2 images

Blurred answer
Knowledge Booster
Differential Equation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,