க Consider the initial value problem my" +cy' +ky = F(t), y(0) = 0, y'(0) = 0 modeling the motion of a spring-mass-dashpot system initially at rest and subjected to an applied force F(t), where the unit of force is the Newton (N). Assume that m = 2 kilograms, c = 8 kilograms per second, k = 80 Newtons per meter, and F(t) = 30 sin(6t) Newtons. a. Solve the initial value problem. y(t)= 887 help (formulas) b. Determine the long-term behavior of the system. Is lim y(t) = 0? If it is, enter zero. If not, enter a function that approximates y(t) for very large positive values of t. That is, at least some of the terms in the formula go to zero, and those terms are called transient terms. The asymptotic approximating function will not include those transient terms. For very large positive values of t, y(t) ≈0 help (formulas)
க Consider the initial value problem my" +cy' +ky = F(t), y(0) = 0, y'(0) = 0 modeling the motion of a spring-mass-dashpot system initially at rest and subjected to an applied force F(t), where the unit of force is the Newton (N). Assume that m = 2 kilograms, c = 8 kilograms per second, k = 80 Newtons per meter, and F(t) = 30 sin(6t) Newtons. a. Solve the initial value problem. y(t)= 887 help (formulas) b. Determine the long-term behavior of the system. Is lim y(t) = 0? If it is, enter zero. If not, enter a function that approximates y(t) for very large positive values of t. That is, at least some of the terms in the formula go to zero, and those terms are called transient terms. The asymptotic approximating function will not include those transient terms. For very large positive values of t, y(t) ≈0 help (formulas)
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question

Transcribed Image Text:க
Consider the initial value problem
my" +cy' +ky = F(t), y(0) = 0, y'(0) = 0
modeling the motion of a spring-mass-dashpot system initially at rest and subjected to an applied force F(t), where the unit of force is the Newton (N).
Assume that m = 2 kilograms, c = 8 kilograms per second, k = 80 Newtons per meter, and F(t) = 30 sin(6t) Newtons.
a. Solve the initial value problem.
y(t) =
887
help (formulas)
b. Determine the long-term behavior of the system. Is lim y(t) = 0? If it is, enter zero. If not, enter a function that approximates y(t) for very large
positive values of t. That is, at least some of the terms in the formula go to zero, and those terms are called transient terms. The asymptotic
approximating function will not include those transient terms.
For very large positive values of t, y(t) ≈ 0
help (formulas)
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 5 steps with 4 images

Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

