Consider the initial value problem for function y given by, y" - 3y + 2y = - 8(t-3), y(0) = 0, y' (0) = 0.
Consider the initial value problem for function y given by, y" - 3y + 2y = - 8(t-3), y(0) = 0, y' (0) = 0.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Please do not provide hand written solution
![Consider the initial value problem for function y given by,
y" - 3y +2 y = − 8(† — 3),
y(0) = 0,
(a) Find the Laplace Transform of the source function, F(s) = L[− 8(t − 3)].
F(s) = -e^(-3s)
(b) Find the Laplace Transform of the solution, Y(s) = L[y(t)].
Y(s) = -e^(-3s)/(s^2-3s+2)
(c) Find the solution y(t) of the initial value problem above.
y(t) =
(u(t-3)*e^(3/2(t-3))sin(1/2(t-3)))
Recall: If needed, the step function at c is denoted as u(t - c).
M
M
M
y (0) = 0.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F150cfd4c-3669-4450-81a4-0c9aa0cabd6a%2Fb34e9c64-ca4b-469d-b52c-873beaefb003%2Fpjbk9ls_processed.png&w=3840&q=75)
Transcribed Image Text:Consider the initial value problem for function y given by,
y" - 3y +2 y = − 8(† — 3),
y(0) = 0,
(a) Find the Laplace Transform of the source function, F(s) = L[− 8(t − 3)].
F(s) = -e^(-3s)
(b) Find the Laplace Transform of the solution, Y(s) = L[y(t)].
Y(s) = -e^(-3s)/(s^2-3s+2)
(c) Find the solution y(t) of the initial value problem above.
y(t) =
(u(t-3)*e^(3/2(t-3))sin(1/2(t-3)))
Recall: If needed, the step function at c is denoted as u(t - c).
M
M
M
y (0) = 0.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 7 steps with 26 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)