= Consider the initial value problem (2xy² D. + cos x cosy (a) Check whether the differential equation is OA. Separable B. Not exact C. O C. OD. cosy) dx + (2x²y- sin x siny) dy = 0 and y(0) = 1 Exact because (2xy² + cos x cos Exact because (2xy² 3 (b) The general solution of the differential equation is given by A. None of the given answers is correct B. 22 x²y² + sinx siny cos x cos y = C with C an arbirary constant 4xy + sin x siny = C with C an arbirary constant 2xy 3 B. + 3 2x y 3 osy), = (2x²y- sinx siny), os y) = (2x²y- sin x siny) y X + cos x COS OC. 2xy + 2x 3 22 OE. x²y²+ sin x cos y = C with C an arbirary constant X 22 x y + sin x cos y = 0 3 3y + sin x sin y cos x cos y = C with C an arbirary constant (c) The solution of the initial value problem is given implicitly by 22 x y + sin x siny- cos x cos y = - cos 1 www + sin x sin y cos x cos y = - cos 1 -

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Consider the initial value problem
(2xy² + cos x cosy) dx + (2x²y- sinx siny) dy = 0 and y(0) = 1
cos
(a) Check whether the differential equation is
OA. Separable
B. Not exact
C.
Exact because (2xy² + cos x cos
cosy), = (2x²y- sinx sin y) x
C.
O D.
OD. Exact because (2xy² + cos x cos y
cos y) = (2x²y- sinx siny) y
(b) The general solution of the differential equation is given by
OA. None of the given answers is correct
OB.
B. x²y² + sinx siny - cos x cos y = C with C an arbirary constant
4xy+sin x sin y = C with C an arbirary constant
2xy 2x y
3
+ sin x sin y - cos x cos y = C with C an arbirary constant
OE. x²y² + sinx cos y = C with C an arbirary constant
2.2
(c) The solution of the initial value problem is given implicitly by
OA.
xy + sinx siny- cos x cos y = - cos 1
OB.
xy + sin x cos y = 0
O C. 3 3y
2xy + 2x
3
+ sin x siny − cos x cos y = - cos 1
Transcribed Image Text:Consider the initial value problem (2xy² + cos x cosy) dx + (2x²y- sinx siny) dy = 0 and y(0) = 1 cos (a) Check whether the differential equation is OA. Separable B. Not exact C. Exact because (2xy² + cos x cos cosy), = (2x²y- sinx sin y) x C. O D. OD. Exact because (2xy² + cos x cos y cos y) = (2x²y- sinx siny) y (b) The general solution of the differential equation is given by OA. None of the given answers is correct OB. B. x²y² + sinx siny - cos x cos y = C with C an arbirary constant 4xy+sin x sin y = C with C an arbirary constant 2xy 2x y 3 + sin x sin y - cos x cos y = C with C an arbirary constant OE. x²y² + sinx cos y = C with C an arbirary constant 2.2 (c) The solution of the initial value problem is given implicitly by OA. xy + sinx siny- cos x cos y = - cos 1 OB. xy + sin x cos y = 0 O C. 3 3y 2xy + 2x 3 + sin x siny − cos x cos y = - cos 1
Expert Solution
Step 1

The given initial value problem is ,

  2xy2+cosx cosydx+2x2y-sinx sinydy=0

 and   y(0) =1

(.)  A differential equation is said to be           ' separable ' if it can be written in the           form ,

         F(x)G(y) dx + f(x)g(y) dy = 0

(.)  Differential equation ,                                           M(x,y) dx + N(x,y) dy = 0

  is said to be exact if ,  

                  My = Nx

  or     M(x,y)y = N(x,y)x

steps

Step by step

Solved in 5 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,