Consider the function f(x)=2sin(π2(x−3))+4. State the amplitude A, period P, and midline. State the phase shift and vertical translation. In the full period [0, P], state the maximum and minimum y-values and their corresponding x-values. Hints for the maximum and minimum values of f(x): The maximum value of y=sin(x) is y=1 and the corresponding x values are x=π2 and multiples of 2π less than and more than this x value. You may want to solve π2(x−3)=π2. The minimum value of y=sin(x) is y=−1 and the corresponding x values are  x=3π2 and multiples of 2π less than and more than this x value. You may want to solve π2(x−3)=3π2. If you get a value for x that is less than 0, you could add multiples of P to get into the next cycles. If you get a value for x that is more than P, you could subtract multiples of P to get into the previous cycles.   For x in the interval [0, P], the maximum y-value and corresponding x-value is at:   x=        y=          For x in the interval [0, P], the minimum y-value and corresponding x-value is at:   x=        y=

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Consider the function f(x)=2sin(π2(x−3))+4. State the amplitude A, period P, and midline. State the phase shift and vertical translation. In the full period [0, P], state the maximum and minimum y-values and their corresponding x-values.

Hints for the maximum and minimum values of f(x):

  • The maximum value of y=sin(x) is y=1 and the corresponding x values are x=π2 and multiples of 2π less than and more than this x value. You may want to solve π2(x−3)=π2.
  • The minimum value of y=sin(x) is y=−1 and the corresponding x values are  x=3π2 and multiples of 2π less than and more than this x value. You may want to solve π2(x−3)=3π2.
  • If you get a value for x that is less than 0, you could add multiples of P to get into the next cycles.
  • If you get a value for x that is more than P, you could subtract multiples of P to get into the previous cycles.

 

For x in the interval [0, P], the maximum y-value and corresponding x-value is at:

 

x=

 

    

y=

 

    

 

For x in the interval [0, P], the minimum y-value and corresponding x-value is at:

 

x=

 

    

y=

 

    

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 5 images

Blurred answer
Knowledge Booster
Harmonic Motion
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,