Consider the functional S[y] = =ffdx [₁ = dx ln(1 + x²y'), y(1) = 0, y(2) = A, where A is a constant and y is a continuously differentiable function for 1 ≤ x ≤ 2. Let h be a continuously differentiable function for 1 ≤ x ≤ 2, and let e be a constant. Let A = S[y+ ch] - S[y]. (a) Show that x²h' 24h2 A = c ² da 4²² - ² ² dx + 22/7² +0(8³). dx 1 1 + x²y' 2 (1+x²y')²

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
Consider the functional
S[y] = f²
- [² de In
dæ In(1+x²y'), y(1) = 0, y(2) = A,
where A is a constant and y is a continuously differentiable function for
1 ≤ x ≤ 2. Let h be a continuously differentiable function for 1 ≤ x ≤ 2,
and let e be a constant. Let A = S[y+ ch] - S[y].
€
(a) Show that
= €
ef da - 2
+2 x²h'
1 + x²y'
dx
S
dx
24h2
(1 + x² y')²
+0(€³).
Transcribed Image Text:Consider the functional S[y] = f² - [² de In dæ In(1+x²y'), y(1) = 0, y(2) = A, where A is a constant and y is a continuously differentiable function for 1 ≤ x ≤ 2. Let h be a continuously differentiable function for 1 ≤ x ≤ 2, and let e be a constant. Let A = S[y+ ch] - S[y]. € (a) Show that = € ef da - 2 +2 x²h' 1 + x²y' dx S dx 24h2 (1 + x² y')² +0(€³).
Expert Solution
steps

Step by step

Solved in 6 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,