Consider the function f(x)=2 sin(π 2 (x−3)) +6  State the amplitude A, period P, and midline. State the phase shift and vertical translation. In the full period [0, P], state the maximum and minimum y-values and their corresponding xvalues.   Enter the exact answers.   Amplitude: A=A=    Period: P=P=    Midline: y=y=    The phase shift is              Click for List . The vertical translation is              Click for List .   Hints for the maximum and minimum values of f(x)fx: The maximum value of y=sin(x)y=sinx is y=1y=1 and the corresponding xx values are x=π2x=π2 and multiples of 2π2π less than and more than this xx value. You may want to solve π2(x−3)=π2π2x−3=π2. The minimum value of y=sin(x)y=sinx is y=−1y=−1 and the corresponding xx values are  x=3π2x=3π2 and multiples of 2π2π less than and more than this xx value. You may want to solve π2(x−3)=3π2π2x−3=3π2. If you get a value for x that is less than 0, you could add multiples of P to get into the next cycles. If you get a value for x that is more than P, you could subtract multiples of P to get into the previous cycles.   For x in the interval [0, P], the maximum y-value and corresponding x-value is at:   x=        y=          For xx in the interval [0, P], the minimum y-value and corresponding x-value is at:   x=        y=

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Consider the function f(x)=2 sin(π 2 (x−3)) +6  State the amplitude A, period P, and midline. State the phase shift and vertical translation. In the full period [0, P], state the maximum and minimum y-values and their corresponding xvalues.

 

Enter the exact answers.

 

Amplitude: A=A=   

Period: P=P=   

Midline: y=y=   

The phase shift is              Click for List .

The vertical translation is              Click for List .

 

Hints for the maximum and minimum values of f(x)fx:

  • The maximum value of y=sin(x)y=sinx is y=1y=1 and the corresponding xx values are x=π2x=π2 and multiples of 2π2π less than and more than this xx value. You may want to solve π2(x−3)=π2π2x−3=π2.
  • The minimum value of y=sin(x)y=sinx is y=−1y=−1 and the corresponding xx values are  x=3π2x=3π2 and multiples of 2π2π less than and more than this xx value. You may want to solve π2(x−3)=3π2π2x−3=3π2.
  • If you get a value for x that is less than 0, you could add multiples of P to get into the next cycles.
  • If you get a value for x that is more than P, you could subtract multiples of P to get into the previous cycles.

 

For x in the interval [0, P], the maximum y-value and corresponding x-value is at:

 

x=

 

    

y=

 

    

 

For xx in the interval [0, P], the minimum y-value and corresponding x-value is at:

 

x=

 

    

y=

 

    

 

 
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,