Consider the function f(x) = 8x³ - 6x² + 3x - 8. An antiderivative of f(x) is F(x) = Axª + Bx³ + Cr²+Dx where A is and B is and C is and D is

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
### Understanding Antiderivatives: A Worksheet

**Problem Statement:**

Consider the function \( f(x) = 8x^3 - 6x^2 + 3x - 8 \). 

An antiderivative of \( f(x) \) is \( F(x) = Ax^4 + Bx^3 + Cx^2 + Dx \).

**Tasks:**

1. **Identify the Constants:**

   Determine the values of the coefficients \( A \), \( B \), \( C \), and \( D \) in the antiderivative \( F(x) \).

- **Where \( A \) is:** 
  \[ \_\_\_\_\_\_\_\_ \]

- **And \( B \) is:** 
  \[ \_\_\_\_\_\_\_\_ \]

- **And \( C \) is:** 
  \[ \_\_\_\_\_\_\_\_ \]

- **And \( D \) is:** 
  \[ \_\_\_\_\_\_\_\_ \]

---

### Explanation:

**Function and Antiderivative Relationship:**
   
To find the antiderivative \( F(x) \) of the function \( f(x) \), we need to integrate \( f(x) \):

\[ f(x) = 8x^3 - 6x^2 + 3x - 8 \]

Integrate term by term:

1. The integral of \( 8x^3 \):
   \[ \int 8x^3 \, dx = 2x^4 \]

2. The integral of \( 6x^2 \):
   \[ \int 6x^2 \, dx = 2x^3 \]

3. The integral of \( 3x \):
   \[ \int 3x \, dx = x^2 \]

4. The integral of \( -8 \):
   \[ \int -8 \, dx = -8x \]

Combine these integrals:

\[ F(x) = 2x^4 - 2x^3 + x^2 - 8x + C \]

**Values of \( A \), \( B \), \( C \), and \( D \):**

- \( A = 2 \)
- \( B = -2 \)
- \( C = 1 \)
- \( D =
Transcribed Image Text:### Understanding Antiderivatives: A Worksheet **Problem Statement:** Consider the function \( f(x) = 8x^3 - 6x^2 + 3x - 8 \). An antiderivative of \( f(x) \) is \( F(x) = Ax^4 + Bx^3 + Cx^2 + Dx \). **Tasks:** 1. **Identify the Constants:** Determine the values of the coefficients \( A \), \( B \), \( C \), and \( D \) in the antiderivative \( F(x) \). - **Where \( A \) is:** \[ \_\_\_\_\_\_\_\_ \] - **And \( B \) is:** \[ \_\_\_\_\_\_\_\_ \] - **And \( C \) is:** \[ \_\_\_\_\_\_\_\_ \] - **And \( D \) is:** \[ \_\_\_\_\_\_\_\_ \] --- ### Explanation: **Function and Antiderivative Relationship:** To find the antiderivative \( F(x) \) of the function \( f(x) \), we need to integrate \( f(x) \): \[ f(x) = 8x^3 - 6x^2 + 3x - 8 \] Integrate term by term: 1. The integral of \( 8x^3 \): \[ \int 8x^3 \, dx = 2x^4 \] 2. The integral of \( 6x^2 \): \[ \int 6x^2 \, dx = 2x^3 \] 3. The integral of \( 3x \): \[ \int 3x \, dx = x^2 \] 4. The integral of \( -8 \): \[ \int -8 \, dx = -8x \] Combine these integrals: \[ F(x) = 2x^4 - 2x^3 + x^2 - 8x + C \] **Values of \( A \), \( B \), \( C \), and \( D \):** - \( A = 2 \) - \( B = -2 \) - \( C = 1 \) - \( D =
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning