Consider the function: f(t) = ekt [cosh(2kt) – H(t – a)(t – b)] %3D What is the Laplace Transform of said function? Seleccione una: s + k e-a(k+s) e-a(k+s) (a – b) а. - (s + k)2 – 4k2 (s + k)² (s + k)? s - k ea(k-s) ea(k-s) (a – b) b. (s – k)? – 4k2 (s – k)2 (s – k) - s + k ea(s-k) 1 а — Ь с. + (s + k)? – 4k2 (s + k)2 | (s+k)? (s + k)² s – k 1 a – b + d. - e-a(k-s) (s – k)? – 4k2 (s – k)² (s – k). |

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Consider the function on the image:

 

What is the Laplace Transform of said function?

 

Show steps.

Consider the function:
f(t) = ekt [cosh(2kt) – H(t – a)(t – b)]
What is the Laplace Transform of said function?
Seleccione una:
s + k
e-a(k+s) (a – b)
e-a(k+s)
a.
-
(s + k)2 – 4k2
(s + k)²
(s + k)?
ea(k-s)
ea(k-s) (a – b)
(s – k)
s - k
b.
(s – k)² – 4k2
(s – k)2
-
s + k
ea(s-k)
а —b
1
+
с.
(s + k)? – 4k2
(s + k)2 | (s+k)?
(s + k)²
s – k
1
a – b
+
d.
-e-a(k-s)
-
(s – k)² – 4k²
(s – k)²
(s – k).
-
Transcribed Image Text:Consider the function: f(t) = ekt [cosh(2kt) – H(t – a)(t – b)] What is the Laplace Transform of said function? Seleccione una: s + k e-a(k+s) (a – b) e-a(k+s) a. - (s + k)2 – 4k2 (s + k)² (s + k)? ea(k-s) ea(k-s) (a – b) (s – k) s - k b. (s – k)² – 4k2 (s – k)2 - s + k ea(s-k) а —b 1 + с. (s + k)? – 4k2 (s + k)2 | (s+k)? (s + k)² s – k 1 a – b + d. -e-a(k-s) - (s – k)² – 4k² (s – k)² (s – k). -
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Laplace Transformation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,