Consider the function ƒ : {1, 2, 3, 4, 5} → {1, 2, 3, 4, 5} given by (²3 ƒ = a. Find f(3). b. Find a ʼn in the domain such that f(n) = 3. c. Find an element ʼn of the domain such that f(n) = n. d. Find an element of the codomain that is not in the range. 1 2 3 4 2 5 4 5).

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Consider the function ƒ : {1, 2, 3, 4, 5} → {1, 2, 3, 4, 5} given by
f =
a. Find f(3).
b. Find a n in the domain such that f(n) = 3.
c. Find an element n of the domain such that f(n) = n.
d. Find an element of the codomain that is not in the range.
5)
3 2 5 44,
1 2 3 4
Transcribed Image Text:Consider the function ƒ : {1, 2, 3, 4, 5} → {1, 2, 3, 4, 5} given by f = a. Find f(3). b. Find a n in the domain such that f(n) = 3. c. Find an element n of the domain such that f(n) = n. d. Find an element of the codomain that is not in the range. 5) 3 2 5 44, 1 2 3 4
Expert Solution
Step 1: Given the information

The given function f colon open curly brackets 1 comma 2 comma 3 comma 4 comma 5 close curly brackets rightwards arrow open curly brackets 1 comma 2 comma 3 comma 4 comma 5 close curly brackets given by,

f equals open parentheses table row 1 2 3 4 5 row 3 2 5 4 4 end table close parentheses.

The aim is to find the following values,

(a) Find f open parentheses 3 close parentheses.

(b) Find n such that f open parentheses n close parentheses equals 3

(c) Find n such that f open parentheses n close parentheses equals n.

(d) Find the element in the codomain that is not in the range of f.

steps

Step by step

Solved in 6 steps with 37 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,