Consider the fragment of LEGV8 assembly below: Program1 STUR X16, [X6, #12] LDUR X16, [X6, #8] SUB X7, X5, X4 CBZ X7, Label ADD X5, X1, X4 SUB X5, X15, X4 Suppose we modify the pipeline so that it has only one memory (that handles both instructions and data). In this case, there will be a structural hazard every time a program needs to fetch an instruction during the same cycle in which another instruction accesses data. 1- Draw a pipeline diagram to show where the code above will stall. 2- In general, is it possible to reduce the number of stalls/ NOPs resulting from this structural hazard by reordering code (reordering the instructions)? 3- Must this structural hazard be handled in hardware? We have seen that data hazards can be eliminated by adding NOPs to the code. Can you do the same with this structural hazard? If so, explain how. If not, explain why not. 4- If we run the code above on a single-cycle computer, what kind of hazards are there? Student should write a justification for the answers.
Consider the fragment of LEGV8 assembly below: Program1 STUR X16, [X6, #12] LDUR X16, [X6, #8] SUB X7, X5, X4 CBZ X7, Label ADD X5, X1, X4 SUB X5, X15, X4 Suppose we modify the pipeline so that it has only one memory (that handles both instructions and data). In this case, there will be a structural hazard every time a program needs to fetch an instruction during the same cycle in which another instruction accesses data. 1- Draw a pipeline diagram to show where the code above will stall. 2- In general, is it possible to reduce the number of stalls/ NOPs resulting from this structural hazard by reordering code (reordering the instructions)? 3- Must this structural hazard be handled in hardware? We have seen that data hazards can be eliminated by adding NOPs to the code. Can you do the same with this structural hazard? If so, explain how. If not, explain why not. 4- If we run the code above on a single-cycle computer, what kind of hazards are there? Student should write a justification for the answers.
Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
Related questions
Question
Warn- do not copy from others
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.Recommended textbooks for you
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education