Consider the following system of linear equations. 4x-2y -z = 14 +2z = 26 =-3 5x 2x +y Solve the system by completing the steps below to produce a reduced row-echelon form. R₁, R₂, and R3 denote the first, second, and third rows, respectively. The arrow notation (→) stands for "replaces," where the expression on the left of the arrow replaces the expression on the right.

Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
icon
Related questions
Question
**Title: Solving a System of Linear Equations Using Row-Echelon Form**

**Introduction:**

Consider the following system of linear equations:

\[ 4x - 2y - z = 14 \]
\[ 5x + 2z = 26 \]
\[ 2x + y = -3 \]

Our goal is to solve this system by transforming the equations into a reduced row-echelon form using matrix operations. We denote the first, second, and third rows as \( R_1 \), \( R_2 \), and \( R_3 \) respectively. The arrow notation (\(\rightarrow\)) indicates that the expression on the left replaces the expression on the right.

---

**Step-by-Step Solution:**

1. **Initial Matrix Setup:**

   The system is represented by the augmented matrix:
   \[
   \begin{bmatrix}
   4 & -2 & -1 & | & 14 \\
   5 & 0 & 2 & | & 26 \\
   2 & 1 & 0 & | & -3 \\
   \end{bmatrix}
   \]

2. **Row Operations:**

   **(1)** Scale \( R_1 \):
   \[
   \begin{bmatrix}
   1 & -\frac{1}{2} & -\frac{1}{4} & | & \frac{7}{2} \\
   5 & 0 & 2 & | & 26 \\
   2 & 1 & 0 & | & -3 \\
   \end{bmatrix}
   \]

   **(2)** Update \( R_2 \) and \( R_3 \):
   \[
   (-5) \cdot R_1 + R_2 \rightarrow R_2
   \]
   \[
   R_1 + R_3 \rightarrow R_3
   \]

   Resulting matrix:
   \[
   \begin{bmatrix}
   1 & -\frac{1}{2} & -\frac{1}{4} & | & \frac{7}{2} \\
   0 & 1 & \frac{13}{4} & | & \frac{17}{2} \\
   0 & 2 & 1 & | & -10 \\
   \
Transcribed Image Text:**Title: Solving a System of Linear Equations Using Row-Echelon Form** **Introduction:** Consider the following system of linear equations: \[ 4x - 2y - z = 14 \] \[ 5x + 2z = 26 \] \[ 2x + y = -3 \] Our goal is to solve this system by transforming the equations into a reduced row-echelon form using matrix operations. We denote the first, second, and third rows as \( R_1 \), \( R_2 \), and \( R_3 \) respectively. The arrow notation (\(\rightarrow\)) indicates that the expression on the left replaces the expression on the right. --- **Step-by-Step Solution:** 1. **Initial Matrix Setup:** The system is represented by the augmented matrix: \[ \begin{bmatrix} 4 & -2 & -1 & | & 14 \\ 5 & 0 & 2 & | & 26 \\ 2 & 1 & 0 & | & -3 \\ \end{bmatrix} \] 2. **Row Operations:** **(1)** Scale \( R_1 \): \[ \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{4} & | & \frac{7}{2} \\ 5 & 0 & 2 & | & 26 \\ 2 & 1 & 0 & | & -3 \\ \end{bmatrix} \] **(2)** Update \( R_2 \) and \( R_3 \): \[ (-5) \cdot R_1 + R_2 \rightarrow R_2 \] \[ R_1 + R_3 \rightarrow R_3 \] Resulting matrix: \[ \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{4} & | & \frac{7}{2} \\ 0 & 1 & \frac{13}{4} & | & \frac{17}{2} \\ 0 & 2 & 1 & | & -10 \\ \
Certainly! Below is a transcription of the image content for an educational website, including details of the matrix transformations and blanks to be filled in.

---

**Matrix Row Operations and Solutions**

**(2)**
1. Perform the operation \((-5) \cdot R_1 + R_2 \to R_2\):

   \[
   \begin{bmatrix} 
   1 & -\frac{1}{2} & -\frac{1}{4} & \vrule & \frac{7}{2} \\ 
   0 & \frac{5}{2} & \frac{13}{4} & \vrule & \frac{17}{2} \\ 
   0 & 2 & \frac{1}{2} & \vrule & -10 
   \end{bmatrix}
   \]

2. Perform the operation \(\boxed{\phantom{a}} \cdot R_1 + R_3 \to R_3\).

**(3)**
1. Transform \(R_2\) using: \(\boxed{\phantom{a}} \cdot R_2 \to R_2\):

   \[
   \begin{bmatrix} 
   1 & -\frac{1}{2} & -\frac{1}{4} & \vrule & \frac{7}{2} \\ 
   0 & 1 & \frac{13}{10} & \vrule & \frac{17}{5} \\ 
   0 & 2 & \frac{1}{2} & \vrule & -10 
   \end{bmatrix}
   \]

**(4)**
1. Perform the operation \(\left(\frac{1}{2}\right) \cdot R_2 + R_1 \to R_1\):

   \[
   \begin{bmatrix} 
   1 & 0 & \frac{2}{5} & \vrule & \frac{26}{5} \\ 
   0 & 1 & \frac{13}{10} & \vrule & \frac{17}{5} \\ 
   0 & 0 & -\frac{21}{10} & \vrule & -\frac{84}{5} 
   \end{bmatrix}
   \]

2.
Transcribed Image Text:Certainly! Below is a transcription of the image content for an educational website, including details of the matrix transformations and blanks to be filled in. --- **Matrix Row Operations and Solutions** **(2)** 1. Perform the operation \((-5) \cdot R_1 + R_2 \to R_2\): \[ \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{4} & \vrule & \frac{7}{2} \\ 0 & \frac{5}{2} & \frac{13}{4} & \vrule & \frac{17}{2} \\ 0 & 2 & \frac{1}{2} & \vrule & -10 \end{bmatrix} \] 2. Perform the operation \(\boxed{\phantom{a}} \cdot R_1 + R_3 \to R_3\). **(3)** 1. Transform \(R_2\) using: \(\boxed{\phantom{a}} \cdot R_2 \to R_2\): \[ \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{4} & \vrule & \frac{7}{2} \\ 0 & 1 & \frac{13}{10} & \vrule & \frac{17}{5} \\ 0 & 2 & \frac{1}{2} & \vrule & -10 \end{bmatrix} \] **(4)** 1. Perform the operation \(\left(\frac{1}{2}\right) \cdot R_2 + R_1 \to R_1\): \[ \begin{bmatrix} 1 & 0 & \frac{2}{5} & \vrule & \frac{26}{5} \\ 0 & 1 & \frac{13}{10} & \vrule & \frac{17}{5} \\ 0 & 0 & -\frac{21}{10} & \vrule & -\frac{84}{5} \end{bmatrix} \] 2.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Recommended textbooks for you
Algebra and Trigonometry (6th Edition)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
Contemporary Abstract Algebra
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Algebra And Trigonometry (11th Edition)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
Introduction to Linear Algebra, Fifth Edition
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
College Algebra (Collegiate Math)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education