Consider the following set of vectors. V₁ = v₂ = 3 + V3 = Let V₁, V₂, and v3 be (column) vectors in R3 and let A be the 3 x 3 matrix V₁ V₂ V3 with these vectors as its columns. Then V₁, V₂, and v3 are linearly dependent if and only if the homogeneous linear system with augmented matrix [A10] has a nontrivia solution. Consider the following equation. C₁ √ [1] +2₂2 3 -7 = 0 0 Solve for C₁, C₂, and C3. If a nontrivial solution exists, state it or state the general solution in terms of the parameter t. (If only the trivial solution exists, enter the trivial solution {C₁, C₂, C3} = {0, 0, 0}.) {C₁, C₂, C3} = < Determine if the vectors V₁, V₂, and v3 are linearly independent. The set of vectors is linearly dependent. The set of vectors is linearly independent.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Vectors and Linear Dependence**

**Consider the following set of vectors:**

\[
\mathbf{v}_1 = \begin{bmatrix} 3 \\ 3 \\ 1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 5 \\ 1 \\ 3 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 1 \\ -7 \\ 3 \end{bmatrix}
\]

Let \(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\) be column vectors in \(\mathbb{R}^3\) and let \(A\) be the \(3 \times 3\) matrix \(\begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{bmatrix}\) with these vectors as its columns. Then \(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\) are linearly dependent if and only if the homogeneous linear system with augmented matrix \([A|0]\) has a nontrivial solution.

**Consider the following equation:**

\[
c_1 \begin{bmatrix} 3 \\ 3 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 5 \\ 1 \\ 3 \end{bmatrix} + c_3 \begin{bmatrix} 1 \\ -7 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}
\]

Solve for \(c_1, c_2, c_3\). If a nontrivial solution exists, state the general solution in terms of the parameter \(t\). (If only the trivial solution exists, enter the trivial solution \(\{c_1, c_2, c_3\} = \{0, 0, 0\}\).)

\[
\{c_1, c_2, c_3\} = \{\underline{\phantom{0}}\}
\]

**Determine if the vectors \(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\) are linearly independent:
Transcribed Image Text:**Vectors and Linear Dependence** **Consider the following set of vectors:** \[ \mathbf{v}_1 = \begin{bmatrix} 3 \\ 3 \\ 1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 5 \\ 1 \\ 3 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 1 \\ -7 \\ 3 \end{bmatrix} \] Let \(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\) be column vectors in \(\mathbb{R}^3\) and let \(A\) be the \(3 \times 3\) matrix \(\begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{bmatrix}\) with these vectors as its columns. Then \(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\) are linearly dependent if and only if the homogeneous linear system with augmented matrix \([A|0]\) has a nontrivial solution. **Consider the following equation:** \[ c_1 \begin{bmatrix} 3 \\ 3 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 5 \\ 1 \\ 3 \end{bmatrix} + c_3 \begin{bmatrix} 1 \\ -7 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \] Solve for \(c_1, c_2, c_3\). If a nontrivial solution exists, state the general solution in terms of the parameter \(t\). (If only the trivial solution exists, enter the trivial solution \(\{c_1, c_2, c_3\} = \{0, 0, 0\}\).) \[ \{c_1, c_2, c_3\} = \{\underline{\phantom{0}}\} \] **Determine if the vectors \(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\) are linearly independent:
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,