Consider the following matrix: -1 9 4 4 2 -2 Determine which of the following sets of vectors are bases of the column space of A. 1) 2) 12 *{(CC) 16 6 3) -3 {E]} {]} -2 5) 7 -8 • (GB) {[ 12 -8 2 -6 -13 8 26 16 4 4 0 4 A
Consider the following matrix: -1 9 4 4 2 -2 Determine which of the following sets of vectors are bases of the column space of A. 1) 2) 12 *{(CC) 16 6 3) -3 {E]} {]} -2 5) 7 -8 • (GB) {[ 12 -8 2 -6 -13 8 26 16 4 4 0 4 A
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![Consider the following matrix:
\[
A = \begin{bmatrix}
4 & -1 & 9 \\
4 & 4 & 4 \\
0 & 2 & -2
\end{bmatrix}
\]
Determine which of the following sets of vectors are bases of the column space of \( A \).
1) \(\begin{Bmatrix} \begin{bmatrix} -3 \\ -4 \\ 0 \end{bmatrix} \end{Bmatrix}\)
2) \(\begin{Bmatrix} \begin{bmatrix} 3 \\ -2 \\ 4 \end{bmatrix} \end{Bmatrix}\)
3) \(\begin{Bmatrix} \begin{bmatrix} 12 \\ -1 \\ -6 \end{bmatrix}, \begin{bmatrix} -1 \\ -16 \\ -6 \end{bmatrix} \end{Bmatrix}\)
4) \(\begin{Bmatrix} \begin{bmatrix} 7 \\ 12 \\ 2 \end{bmatrix}, \begin{bmatrix} -8 \\ 1 \\ -4 \end{bmatrix} \end{Bmatrix}\)
5) \(\begin{Bmatrix} \begin{bmatrix} -13 \\ -8 \\ 2 \end{bmatrix}, \begin{bmatrix} 26 \\ 16 \\ -4 \end{bmatrix} \end{Bmatrix}\)
6) \(\begin{Bmatrix} \begin{bmatrix} 8 \\ 6 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix} \end{Bmatrix}\)
7) \(\begin{Bmatrix} \begin{bmatrix} -3 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ -2 \end{bmatrix} \end{Bmatrix}\)
8) \(\begin{Bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \\ -3 \end{bmatrix} \end{Bmatrix}\)
9) \(\begin{Bmatrix} \begin{bmatrix} 1 \\ 1 \\ -](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fb493ecdd-cbdc-400d-a05a-de2010eb2d52%2Fd48f3110-7208-45dc-81d5-b67976d62f60%2Fn1auuq2_processed.png&w=3840&q=75)
Transcribed Image Text:Consider the following matrix:
\[
A = \begin{bmatrix}
4 & -1 & 9 \\
4 & 4 & 4 \\
0 & 2 & -2
\end{bmatrix}
\]
Determine which of the following sets of vectors are bases of the column space of \( A \).
1) \(\begin{Bmatrix} \begin{bmatrix} -3 \\ -4 \\ 0 \end{bmatrix} \end{Bmatrix}\)
2) \(\begin{Bmatrix} \begin{bmatrix} 3 \\ -2 \\ 4 \end{bmatrix} \end{Bmatrix}\)
3) \(\begin{Bmatrix} \begin{bmatrix} 12 \\ -1 \\ -6 \end{bmatrix}, \begin{bmatrix} -1 \\ -16 \\ -6 \end{bmatrix} \end{Bmatrix}\)
4) \(\begin{Bmatrix} \begin{bmatrix} 7 \\ 12 \\ 2 \end{bmatrix}, \begin{bmatrix} -8 \\ 1 \\ -4 \end{bmatrix} \end{Bmatrix}\)
5) \(\begin{Bmatrix} \begin{bmatrix} -13 \\ -8 \\ 2 \end{bmatrix}, \begin{bmatrix} 26 \\ 16 \\ -4 \end{bmatrix} \end{Bmatrix}\)
6) \(\begin{Bmatrix} \begin{bmatrix} 8 \\ 6 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix} \end{Bmatrix}\)
7) \(\begin{Bmatrix} \begin{bmatrix} -3 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ -2 \end{bmatrix} \end{Bmatrix}\)
8) \(\begin{Bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \\ -3 \end{bmatrix} \end{Bmatrix}\)
9) \(\begin{Bmatrix} \begin{bmatrix} 1 \\ 1 \\ -
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)