Consider the following matrix: -1 9 4 4 2 -2 Determine which of the following sets of vectors are bases of the column space of A. 1) 2) 12 *{(CC) 16 6 3) -3 {E]} {]} -2 5) 7 -8 • (GB) {[ 12 -8 2 -6 -13 8 26 16 4 4 0 4 A

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Consider the following matrix:

\[ 
A = \begin{bmatrix} 
4 & -1 & 9 \\ 
4 & 4 & 4 \\ 
0 & 2 & -2 
\end{bmatrix} 
\]

Determine which of the following sets of vectors are bases of the column space of \( A \).

1) \(\begin{Bmatrix} \begin{bmatrix} -3 \\ -4 \\ 0 \end{bmatrix} \end{Bmatrix}\)

2) \(\begin{Bmatrix} \begin{bmatrix} 3 \\ -2 \\ 4 \end{bmatrix} \end{Bmatrix}\)

3) \(\begin{Bmatrix} \begin{bmatrix} 12 \\ -1 \\ -6 \end{bmatrix}, \begin{bmatrix} -1 \\ -16 \\ -6 \end{bmatrix} \end{Bmatrix}\)

4) \(\begin{Bmatrix} \begin{bmatrix} 7 \\ 12 \\ 2 \end{bmatrix}, \begin{bmatrix} -8 \\ 1 \\ -4 \end{bmatrix} \end{Bmatrix}\)

5) \(\begin{Bmatrix} \begin{bmatrix} -13 \\ -8 \\ 2 \end{bmatrix}, \begin{bmatrix} 26 \\ 16 \\ -4 \end{bmatrix} \end{Bmatrix}\)

6) \(\begin{Bmatrix} \begin{bmatrix} 8 \\ 6 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix} \end{Bmatrix}\)

7) \(\begin{Bmatrix} \begin{bmatrix} -3 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ -2 \end{bmatrix} \end{Bmatrix}\)

8) \(\begin{Bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \\ -3 \end{bmatrix} \end{Bmatrix}\)

9) \(\begin{Bmatrix} \begin{bmatrix} 1 \\ 1 \\ -
Transcribed Image Text:Consider the following matrix: \[ A = \begin{bmatrix} 4 & -1 & 9 \\ 4 & 4 & 4 \\ 0 & 2 & -2 \end{bmatrix} \] Determine which of the following sets of vectors are bases of the column space of \( A \). 1) \(\begin{Bmatrix} \begin{bmatrix} -3 \\ -4 \\ 0 \end{bmatrix} \end{Bmatrix}\) 2) \(\begin{Bmatrix} \begin{bmatrix} 3 \\ -2 \\ 4 \end{bmatrix} \end{Bmatrix}\) 3) \(\begin{Bmatrix} \begin{bmatrix} 12 \\ -1 \\ -6 \end{bmatrix}, \begin{bmatrix} -1 \\ -16 \\ -6 \end{bmatrix} \end{Bmatrix}\) 4) \(\begin{Bmatrix} \begin{bmatrix} 7 \\ 12 \\ 2 \end{bmatrix}, \begin{bmatrix} -8 \\ 1 \\ -4 \end{bmatrix} \end{Bmatrix}\) 5) \(\begin{Bmatrix} \begin{bmatrix} -13 \\ -8 \\ 2 \end{bmatrix}, \begin{bmatrix} 26 \\ 16 \\ -4 \end{bmatrix} \end{Bmatrix}\) 6) \(\begin{Bmatrix} \begin{bmatrix} 8 \\ 6 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix} \end{Bmatrix}\) 7) \(\begin{Bmatrix} \begin{bmatrix} -3 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ -2 \end{bmatrix} \end{Bmatrix}\) 8) \(\begin{Bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \\ -3 \end{bmatrix} \end{Bmatrix}\) 9) \(\begin{Bmatrix} \begin{bmatrix} 1 \\ 1 \\ -
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,