Consider the following joint probabilities table for X and Y, where x = 1, 2, 3 and y = 1, 2, 3, 4. X\Y 1 2 3 1 2 3 0.05 0.1 0.05 0.2 0.02 0.25 0.15 0.01 0.03 Calculate the covariance of X and Y. Cov(X,Y)= -0.0284 Calculate the standard deviations of X and Y. ox= 0.6771 σy = 1.2459 4 0.01 0.07 0.06 X p(X,Y)= Calculate the coefficient of correlation of X and Y. -0.03758

A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
icon
Related questions
Question
6. Need help
**Joint Probability Table for Random Variables X and Y**

Consider the following joint probabilities table for \( X \) and \( Y \), where \( x = 1, 2, 3 \) and \( y = 1, 2, 3, 4 \).

\[
\begin{array}{c|cccc}
XY & 1 & 2 & 3 & 4 \\
\hline
1 & 0.05 & 0.1 & 0.05 & 0.01 \\
2 & 0.2 & 0.02 & 0.25 & 0.07 \\
3 & 0.15 & 0.01 & 0.03 & 0.06 \\
\end{array}
\]

**Covariance Calculation**

Calculate the covariance of \( X \) and \( Y \).

\[ \text{Cov}(X, Y) = 0.0284 \]

**Standard Deviations Calculation**

Calculate the standard deviations of \( X \) and \( Y \).

\[ \sigma_X = 0.6771 \]

\[ \sigma_Y = 1.2459 \] (Note: Error indicated by red mark)

**Correlation Coefficient Calculation**

Calculate the coefficient of correlation of \( X \) and \( Y \).

\[ \rho(X, Y) = -0.03758 \]
Transcribed Image Text:**Joint Probability Table for Random Variables X and Y** Consider the following joint probabilities table for \( X \) and \( Y \), where \( x = 1, 2, 3 \) and \( y = 1, 2, 3, 4 \). \[ \begin{array}{c|cccc} XY & 1 & 2 & 3 & 4 \\ \hline 1 & 0.05 & 0.1 & 0.05 & 0.01 \\ 2 & 0.2 & 0.02 & 0.25 & 0.07 \\ 3 & 0.15 & 0.01 & 0.03 & 0.06 \\ \end{array} \] **Covariance Calculation** Calculate the covariance of \( X \) and \( Y \). \[ \text{Cov}(X, Y) = 0.0284 \] **Standard Deviations Calculation** Calculate the standard deviations of \( X \) and \( Y \). \[ \sigma_X = 0.6771 \] \[ \sigma_Y = 1.2459 \] (Note: Error indicated by red mark) **Correlation Coefficient Calculation** Calculate the coefficient of correlation of \( X \) and \( Y \). \[ \rho(X, Y) = -0.03758 \]
Expert Solution
Step 1: Define the data.

From the information, given the joint probabilities table is, Where, x=1,2,3 and y= 1,2,3,4.

Probability homework question answer, step 1, image 1


steps

Step by step

Solved in 3 steps with 3 images

Blurred answer