Consider the following initial-value problem. 2 x' = X, X(0) = 1 Find the eigenvalues of the coefficient matrix A(t). (Enter your answers as a comma-separated list.) Find an eigenvector for the corresponding eigenvalues. (Enter your answers from smallest eigenvalue to largest eigenval K, K, = Solve the given initial-value problem. X(t) =

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
### Initial-Value Problem

Consider the following initial-value problem:

\[ \mathbf{X}' = 
\begin{pmatrix} 
\frac{1}{2} & 0 \\ 
1 & -\frac{1}{2} 
\end{pmatrix} 
\mathbf{X}, \quad \mathbf{X}(0) = 
\begin{pmatrix}
2 \\
8
\end{pmatrix} \]

#### Tasks:

1. **Find the eigenvalues of the coefficient matrix \( A(t) \)**. (Enter your answers as a comma-separated list.)

   \[
   \lambda = \_\_\_\_
   \]

2. **Find an eigenvector for the corresponding eigenvalues**. (Enter your answers from smallest eigenvalue to largest eigenvalue.)

   \[
   \mathbf{K_1} =
   \begin{pmatrix}
   \_\_\_ \\
   \_\_\_
   \end{pmatrix}
   \]

   \[
   \mathbf{K_2} =
   \begin{pmatrix}
   \_\_\_ \\
   \_\_\_
   \end{pmatrix}
   \]

3. **Solve the given initial-value problem**.

   \[
   \mathbf{X}(t) = \_\_\_\_
   \]

This problem involves finding eigenvalues and eigenvectors of the given coefficient matrix, and then using them to solve the initial-value problem.
Transcribed Image Text:### Initial-Value Problem Consider the following initial-value problem: \[ \mathbf{X}' = \begin{pmatrix} \frac{1}{2} & 0 \\ 1 & -\frac{1}{2} \end{pmatrix} \mathbf{X}, \quad \mathbf{X}(0) = \begin{pmatrix} 2 \\ 8 \end{pmatrix} \] #### Tasks: 1. **Find the eigenvalues of the coefficient matrix \( A(t) \)**. (Enter your answers as a comma-separated list.) \[ \lambda = \_\_\_\_ \] 2. **Find an eigenvector for the corresponding eigenvalues**. (Enter your answers from smallest eigenvalue to largest eigenvalue.) \[ \mathbf{K_1} = \begin{pmatrix} \_\_\_ \\ \_\_\_ \end{pmatrix} \] \[ \mathbf{K_2} = \begin{pmatrix} \_\_\_ \\ \_\_\_ \end{pmatrix} \] 3. **Solve the given initial-value problem**. \[ \mathbf{X}(t) = \_\_\_\_ \] This problem involves finding eigenvalues and eigenvectors of the given coefficient matrix, and then using them to solve the initial-value problem.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Knowledge Booster
Matrix Eigenvalues and Eigenvectors
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,