Consider the following generalization of the maximum matching problem, which we call Strict-Matching. Recall that a matching in an undirected graph G = (V, E) is a set of edges such that no distinct pair of edges {a, b} and {c, d} have endpoints that are equal: {a, b} ∩ {c, d} = ∅. Say that a strict matching is matching with the property that no pair of distinct edges have endpoints that are connected by an edge: {a, c} ̸∈ E, {a, d} ̸∈ E, {b, c} ̸∈ E, and {b, d} ̸∈ E. (Since a strict matching is also a matching, we also require {a, b} ∩ {c, d} = ∅.) The problem Strict-Matching is then given a graph G and an integer k, does G contain a strict matching with at least k edges. Prove that Strict-Matching is NP-complete.

Computer Networking: A Top-Down Approach (7th Edition)
7th Edition
ISBN:9780133594140
Author:James Kurose, Keith Ross
Publisher:James Kurose, Keith Ross
Chapter1: Computer Networks And The Internet
Section: Chapter Questions
Problem R1RQ: What is the difference between a host and an end system? List several different types of end...
icon
Related questions
Question

Consider the following generalization of the maximum matching problem, which we call
Strict-Matching. Recall that a matching in an undirected graph G = (V, E) is a set
of edges such that no distinct pair of edges {a, b} and {c, d} have endpoints that are
equal: {a, b} ∩ {c, d} = ∅. Say that a strict matching is matching with the property
that no pair of distinct edges have endpoints that are connected by an edge: {a, c} ̸∈ E,
{a, d} ̸∈ E, {b, c} ̸∈ E, and {b, d} ̸∈ E. (Since a strict matching is also a matching, we
also require {a, b} ∩ {c, d} = ∅.) The problem Strict-Matching is then given a graph
G and an integer k, does G contain a strict matching with at least k edges.
Prove that Strict-Matching is NP-complete.

Expert Solution
Step 1: Explanation

Strict-Matching is NP-complete because it is at least as hard as the maximum matching problem, which is known to be NP-complete, and it can be reduced to the maximum matching problem in polynomial time.

To show that Strict-Matching is NP-complete, we need to prove two things:

  1. Strict-Matching is in NP: This means that given a proposed solution, we can check its validity in polynomial time. In this case, a proposed solution would be a set of edges that form a strict matching. To verify that a solution is valid, we can simply check that every vertex has degree 1, that there are no self-loops, and that no two edges share endpoints.

  2. Strict-Matching is NP-hard: This means that we can reduce an NP-hard problem to Strict-Matching in polynomial time. In this case, we will reduce the maximum matching problem to Strict-Matching.

Reducing Maximum Matching to Strict-Matching:

Given an instance of the maximum matching problem, represented by an undirected graph G = (V, E), we can construct a new graph G' = (V', E') in polynomial time as follows:

  1. Create a new vertex for each vertex in G and call this set of vertices V'.
  2. For each vertex v in V, connect the two vertices in V' that correspond to v with a new edge (v1, v2).
  3. Add all the edges in E to E'.

Now, the maximum matching in G' will be a strict matching in G if and only if the number of edges in the maximum matching is equal to the number of vertices in G.

Since the maximum matching problem is NP-complete, it follows that Strict-Matching is also NP-complete.

In conclusion, Strict-Matching is NP-complete because it can be reduced to the maximum matching problem, which is known to be NP-complete, and because it is in NP. This means that Strict-Matching is as hard as the maximum matching problem and that finding an exact solution for Strict-Matching is at least as hard as finding an exact solution for the maximum matching problem.

 

 

trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Sets
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Computer Networking: A Top-Down Approach (7th Edi…
Computer Networking: A Top-Down Approach (7th Edi…
Computer Engineering
ISBN:
9780133594140
Author:
James Kurose, Keith Ross
Publisher:
PEARSON
Computer Organization and Design MIPS Edition, Fi…
Computer Organization and Design MIPS Edition, Fi…
Computer Engineering
ISBN:
9780124077263
Author:
David A. Patterson, John L. Hennessy
Publisher:
Elsevier Science
Network+ Guide to Networks (MindTap Course List)
Network+ Guide to Networks (MindTap Course List)
Computer Engineering
ISBN:
9781337569330
Author:
Jill West, Tamara Dean, Jean Andrews
Publisher:
Cengage Learning
Concepts of Database Management
Concepts of Database Management
Computer Engineering
ISBN:
9781337093422
Author:
Joy L. Starks, Philip J. Pratt, Mary Z. Last
Publisher:
Cengage Learning
Prelude to Programming
Prelude to Programming
Computer Engineering
ISBN:
9780133750423
Author:
VENIT, Stewart
Publisher:
Pearson Education
Sc Business Data Communications and Networking, T…
Sc Business Data Communications and Networking, T…
Computer Engineering
ISBN:
9781119368830
Author:
FITZGERALD
Publisher:
WILEY