Consider the following function. f(x) = x6/7, a = 1, n = 3, 0.8 ≤ x ≤ 1.2 (a) Approximate f by a Taylor polynomial with degree n at the number a. T3(x) =

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Consider the following function.
f(x) = x6/7, a = 1, n = 3,
(a) Approximate f by a Taylor polynomial with degree n at the number a.
T3(x) =
(b) Use Taylor's Inequality to estimate the accuracy of the approximation f(x) = T(x) when x lies in the given interval. (Round your answer to eight decimal places.)
|R3(x)|
Enter a number.
(c) Check your result in part (b) by graphing IR (X).
-5.x 10
-6
y
-0.000010
-0.000015
-0.000020
-0.000025
-0.000030
-0.000035
y
0.000035
0.000030
0.000025
0.000020
0.000015
0.000010
5.x 10
-6
0.9
0.9
0.8 ≤ x ≤ 1.2
1.0
1.0
1.1
1.1
1.2
1.2
X
X
0.000035
0.000030
0.000025
0.000020
0.000015
0.000010
y
-6
5.x 10
-5.x 10
y
-6
-0.000010
-0.000015
-0.000020
-0.000025
-0.000030
-0.000035
0.9
0.9
1.0
1.1
1.1
X
1.2
1.2
X
Transcribed Image Text:Consider the following function. f(x) = x6/7, a = 1, n = 3, (a) Approximate f by a Taylor polynomial with degree n at the number a. T3(x) = (b) Use Taylor's Inequality to estimate the accuracy of the approximation f(x) = T(x) when x lies in the given interval. (Round your answer to eight decimal places.) |R3(x)| Enter a number. (c) Check your result in part (b) by graphing IR (X). -5.x 10 -6 y -0.000010 -0.000015 -0.000020 -0.000025 -0.000030 -0.000035 y 0.000035 0.000030 0.000025 0.000020 0.000015 0.000010 5.x 10 -6 0.9 0.9 0.8 ≤ x ≤ 1.2 1.0 1.0 1.1 1.1 1.2 1.2 X X 0.000035 0.000030 0.000025 0.000020 0.000015 0.000010 y -6 5.x 10 -5.x 10 y -6 -0.000010 -0.000015 -0.000020 -0.000025 -0.000030 -0.000035 0.9 0.9 1.0 1.1 1.1 X 1.2 1.2 X
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,