Consider the following function. f(x) = x6/7, a = 1, n = 3, 0.8 ≤ x ≤ 1.2 (a) Approximate f by a Taylor polynomial with degree n at the number a. T3(x) =
Consider the following function. f(x) = x6/7, a = 1, n = 3, 0.8 ≤ x ≤ 1.2 (a) Approximate f by a Taylor polynomial with degree n at the number a. T3(x) =
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![Consider the following function.
f(x) = x6/7, a = 1, n = 3,
(a) Approximate f by a Taylor polynomial with degree n at the number a.
T3(x) =
(b) Use Taylor's Inequality to estimate the accuracy of the approximation f(x) = T(x) when x lies in the given interval. (Round your answer to eight decimal places.)
|R3(x)|
Enter a number.
(c) Check your result in part (b) by graphing IR (X).
-5.x 10
-6
y
-0.000010
-0.000015
-0.000020
-0.000025
-0.000030
-0.000035
y
0.000035
0.000030
0.000025
0.000020
0.000015
0.000010
5.x 10
-6
0.9
0.9
0.8 ≤ x ≤ 1.2
1.0
1.0
1.1
1.1
1.2
1.2
X
X
0.000035
0.000030
0.000025
0.000020
0.000015
0.000010
y
-6
5.x 10
-5.x 10
y
-6
-0.000010
-0.000015
-0.000020
-0.000025
-0.000030
-0.000035
0.9
0.9
1.0
1.1
1.1
X
1.2
1.2
X](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fbbe02b51-f32f-4987-98d3-1e9fc879ae68%2F9d0e817b-780e-4b5d-b353-c2d1cf57d49a%2F7724j6c_processed.png&w=3840&q=75)
Transcribed Image Text:Consider the following function.
f(x) = x6/7, a = 1, n = 3,
(a) Approximate f by a Taylor polynomial with degree n at the number a.
T3(x) =
(b) Use Taylor's Inequality to estimate the accuracy of the approximation f(x) = T(x) when x lies in the given interval. (Round your answer to eight decimal places.)
|R3(x)|
Enter a number.
(c) Check your result in part (b) by graphing IR (X).
-5.x 10
-6
y
-0.000010
-0.000015
-0.000020
-0.000025
-0.000030
-0.000035
y
0.000035
0.000030
0.000025
0.000020
0.000015
0.000010
5.x 10
-6
0.9
0.9
0.8 ≤ x ≤ 1.2
1.0
1.0
1.1
1.1
1.2
1.2
X
X
0.000035
0.000030
0.000025
0.000020
0.000015
0.000010
y
-6
5.x 10
-5.x 10
y
-6
-0.000010
-0.000015
-0.000020
-0.000025
-0.000030
-0.000035
0.9
0.9
1.0
1.1
1.1
X
1.2
1.2
X
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)