Consider the following function: 1 (s+a)5 e-as F(s) = %3D What is the function f(t) whose Laplace transform is the given function? Select one (t – a)ª e at(t – a)ª a. f(t) = H(t – a)eª(t-a) 24 24 (t – a)4 e at(t – a)ª b. f(t) = H(t – a)e a(t-a), 24 24 (t + a)4 e atz4 c. f(t) = H(t – a)e alt-a) 24 24 (t – a)4 e atț4 d. f(t) = H«(t)ea(a-t) 24 24

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Consider the following function:
1
(s+a)5
e-as
F(s) =
%3D
What is the function f(t) whose Laplace transform is the given function?
Select one
(t – a)ª
e at(t – a)ª
a. f(t) = H(t – a)eª(t-a)
24
24
(t – a)4
e at(t – a)ª
b. f(t) = H(t – a)e a(t-a),
24
24
(t + a)4
e atz4
c. f(t) = H(t – a)e alt-a)
24
24
(t – a)4
e atț4
d. f(t) = H«(t)ea(a-t)
24
24
Transcribed Image Text:Consider the following function: 1 (s+a)5 e-as F(s) = %3D What is the function f(t) whose Laplace transform is the given function? Select one (t – a)ª e at(t – a)ª a. f(t) = H(t – a)eª(t-a) 24 24 (t – a)4 e at(t – a)ª b. f(t) = H(t – a)e a(t-a), 24 24 (t + a)4 e atz4 c. f(t) = H(t – a)e alt-a) 24 24 (t – a)4 e atț4 d. f(t) = H«(t)ea(a-t) 24 24
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Laplace Transformation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,