Consider the following exponential probability density function. 1 -x/5 5 (a) Write the formula for P(x S xo). f(x) = -1-e- x0 5 for x ≥ 0 (b) Find P(x ≤ 2). (Round your answer to four decimal places.) 0.3297 (c) Find P(x ≥ 5). (Round your answer to four decimal places.) 0.3679 (d) Find P(x ≤ 7). (Round your answer to four decimal places.) 0.7534 (e) Find P(2 ≤ x ≤ 7). (Round your answer to four decimal places.) 0.4237

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question

do part a for number 4 only.  For number 2 do whole thing . thanks.

Consider the following exponential probability density function.
f(x)
1_-x/5
=-e
-1-e
for x ≥ 0
(a) Write the formula for P(x ≤ xo).
x0
5
(b) Find P(x ≤ 2). (Round your answer to four decimal places.)
0.3297
(c) Find P(x ≥ 5). (Round your answer to four decimal places.)
0.3679
(d) Find P(x ≤ 7). (Round your answer to four decimal places.)
0.7534
(e) Find P(2 ≤ x ≤ 7). (Round your answer to four decimal places.)
0.4237
Transcribed Image Text:Consider the following exponential probability density function. f(x) 1_-x/5 =-e -1-e for x ≥ 0 (a) Write the formula for P(x ≤ xo). x0 5 (b) Find P(x ≤ 2). (Round your answer to four decimal places.) 0.3297 (c) Find P(x ≥ 5). (Round your answer to four decimal places.) 0.3679 (d) Find P(x ≤ 7). (Round your answer to four decimal places.) 0.7534 (e) Find P(2 ≤ x ≤ 7). (Round your answer to four decimal places.) 0.4237
To find P(-1.99 ≤z≤ 0.48), subtract the area to the left of z = -1.99 from the area to the left of z = 0.48. Tables can be used to find areas to the left of z values. Along the leftmost column are values of z
precise to one decimal place. Trace along the necessary row until you get to the column for the needed hundredths place. The value where the row and column intersect is the area under the curve to the left of
that z value.
Z
0.00
0.01
0.02
0.03
0.04
-2.0 0.0228 0.0222 0.0217 0.0212 0.0207
-1.9 0.0287 0.0281 0.0274 0.0268 0.0262
-1.8 0.0359 0.0351 0.0344 0.0336 0.0329
0.05
0.06
0.07
0.08
0.0202 0.0197 0.0192 0.0188
0.0256 0.0250 0.0244
0.0322 0.0314 0.0307
Z
0.3
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.6179 0.6217 0.6255 0.6293 0.6331
0.6368 0.6406
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157
0.0239
0.0301
Use the table excerpt above to find the area under the standard normal curve to the left of z = -1.99, P(Z < -1.99).
P(Z < -1.99) =
0.07
0.08
0.6443 0.6480
0.6808 0.6844
0.7190
0.09
0.0183
0.0233
0.0294
0.09
0.6517
0.6879
0.7224
Use the table excerpt above to find the area under the standard normal curve to the left of z = 0.48, P(z ≤ 0.48).
P(Z < 0.48) =
Transcribed Image Text:To find P(-1.99 ≤z≤ 0.48), subtract the area to the left of z = -1.99 from the area to the left of z = 0.48. Tables can be used to find areas to the left of z values. Along the leftmost column are values of z precise to one decimal place. Trace along the necessary row until you get to the column for the needed hundredths place. The value where the row and column intersect is the area under the curve to the left of that z value. Z 0.00 0.01 0.02 0.03 0.04 -2.0 0.0228 0.0222 0.0217 0.0212 0.0207 -1.9 0.0287 0.0281 0.0274 0.0268 0.0262 -1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.05 0.06 0.07 0.08 0.0202 0.0197 0.0192 0.0188 0.0256 0.0250 0.0244 0.0322 0.0314 0.0307 Z 0.3 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.0239 0.0301 Use the table excerpt above to find the area under the standard normal curve to the left of z = -1.99, P(Z < -1.99). P(Z < -1.99) = 0.07 0.08 0.6443 0.6480 0.6808 0.6844 0.7190 0.09 0.0183 0.0233 0.0294 0.09 0.6517 0.6879 0.7224 Use the table excerpt above to find the area under the standard normal curve to the left of z = 0.48, P(z ≤ 0.48). P(Z < 0.48) =
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 2 images

Blurred answer
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman