Consider the following differential equation. (x - y + y² sin(x)) dx = (6xy5 + 2y cos(x)) dy

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Consider the following differential equation.
(x - y + y² sin(x)) dx = (6xy5 + 2y cos(x)) dy
Let M = y6 - y² sin(x) - x and N = 6xy5 + 2y cos(x). Find the following partial derivatives.
=
My
N. =
Is the given differential equation exact?
Yes
No
af
Let
=y6y² sin(x) - x. Integrate this partial derivative with respect to x, letting h(y) be an unknown function in y.
əx
f(x, y) =
+ h(y)
Find the derivative of h(y).
h'(y) =
Find the general solution of the given differential equation. (If it is not exact, enter NOT.)
Transcribed Image Text:Consider the following differential equation. (x - y + y² sin(x)) dx = (6xy5 + 2y cos(x)) dy Let M = y6 - y² sin(x) - x and N = 6xy5 + 2y cos(x). Find the following partial derivatives. = My N. = Is the given differential equation exact? Yes No af Let =y6y² sin(x) - x. Integrate this partial derivative with respect to x, letting h(y) be an unknown function in y. əx f(x, y) = + h(y) Find the derivative of h(y). h'(y) = Find the general solution of the given differential equation. (If it is not exact, enter NOT.)
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,