Consider the following differential equation. (A computer algebra system is recommended.) y' + = 7 cos 2t, t> 0 1/2 t (a) Draw a direction field for the given differential equation. y 2.0!! 1.0 1.5▬▬▬▬▬ 1|||||||||||| …………………………… ||||||| 0.5 ||||||||| O-4 |||||||||||| y 41 2 ||| |||||||||||||||| |||||||||||||||||| 4 ***||| 0.5 6 8 10 11111111 |||||||||||||||| ||||||||||||||| 1111111111111111 1111111111 | | | | | | | | | | | | |||||| ||||||| 111111 t y 4 O-41 y 4 11 |||||||||||||| 11 0-4111 111111 ||||||||||| |||||||||| 0.5 ||||| |||||||| VIII 111 |||||||| 1|||||||| 71||||||ii 1/ 111 III III -1 || | \//| | | | | / \ || -1111 VIL \ || | \/ || | || / \ \ XIII/II/N 11 11-11 16 t

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Please answer the questions. they are connected. ty!

Consider the following differential equation. (A computer algebra system is recommended.)
y' + = 7 cos 2t, t> 0
1/2 t
(a) Draw a direction field for the given differential equation.
y
2.0!!!
1.5
1.0
0.5
y
4
||||||||||||
|||||||||||||
1||||||||||||
www.800
||||||||
11111
O-41
2
|||
||||||||||||||
||||||||||||||||
4
|||||||||||
0.5
111111|||||||||
|||||||||||||||||
| | | | | | | | | |
6 8 10
1||||||||||||||||||||
1111111111111111
111111111||||||
1 1 1 1 1 1 1 | | |
******
111111
||||||
t
y
4
O-41
y
4
11
||||||||||||||||||||
11
0-4111
||||||||||
11|||||||||
0.5
|||||
1/ 111
III
- 1 | | | \ / |||||||
-11|| \/ ||
VIII
III
11-11
16
t
Transcribed Image Text:Consider the following differential equation. (A computer algebra system is recommended.) y' + = 7 cos 2t, t> 0 1/2 t (a) Draw a direction field for the given differential equation. y 2.0!!! 1.5 1.0 0.5 y 4 |||||||||||| ||||||||||||| 1|||||||||||| www.800 |||||||| 11111 O-41 2 ||| |||||||||||||| |||||||||||||||| 4 ||||||||||| 0.5 111111||||||||| ||||||||||||||||| | | | | | | | | | | 6 8 10 1|||||||||||||||||||| 1111111111111111 111111111|||||| 1 1 1 1 1 1 1 | | | ****** 111111 |||||| t y 4 O-41 y 4 11 |||||||||||||||||||| 11 0-4111 |||||||||| 11||||||||| 0.5 ||||| 1/ 111 III - 1 | | | \ / ||||||| -11|| \/ || VIII III 11-11 16 t
(b) Based on an inspection of the direction field, describe how solutions behave for large t.
O All solutions seem to approach a line in the region where the negative and positive slopes meet each other.
O All solutions seem to eventually have positive slopes, and hence increase without bound.
O All solutions seem to eventually have negative slopes, and hence decrease without bound.
O The solutions appear to be oscillatory.
O If y(0) > 0, solutions appear to eventually have positive slopes, and hence increase without bound. If y(0) ≤ 0, solutions appear to have negative slopes and decrease without bound.
(c) Find the general solution of the given differential equation.
y(t) =
Use it to determine how solutions behave as t → co.
7
O All solutions converge to the function y = cos 2t.
2
O All solutions will increase exponentially.
O All solutions converge to the function y =
2
7
O All solutions converge to the function y =
2
O All solutions will decrease exponentially.
sin 2t.
Transcribed Image Text:(b) Based on an inspection of the direction field, describe how solutions behave for large t. O All solutions seem to approach a line in the region where the negative and positive slopes meet each other. O All solutions seem to eventually have positive slopes, and hence increase without bound. O All solutions seem to eventually have negative slopes, and hence decrease without bound. O The solutions appear to be oscillatory. O If y(0) > 0, solutions appear to eventually have positive slopes, and hence increase without bound. If y(0) ≤ 0, solutions appear to have negative slopes and decrease without bound. (c) Find the general solution of the given differential equation. y(t) = Use it to determine how solutions behave as t → co. 7 O All solutions converge to the function y = cos 2t. 2 O All solutions will increase exponentially. O All solutions converge to the function y = 2 7 O All solutions converge to the function y = 2 O All solutions will decrease exponentially. sin 2t.
Expert Solution
steps

Step by step

Solved in 5 steps with 6 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,