Consider the following 3-players version of the war of attrition. All three players can stay and compete to get a reward that has a value V. Each player pays 1 for each unit of time he/she stays. The winner that gets the reward is the last to quit. If several agents are the last to stay and they quit at exactly the same time, the reward is given to one of them following a fair lottery (each of them has the same probability to get the reward). In the first round, each player chooses her/his first exit time, 0 ≤ xi < ∞, and the player with the lowest value, xmin, pays xmin and quits. The other two players also pay xmin, but they continue to the second round. If several players try to quit together at xmin, only one player actually quits, and that player is determined in a lottery in which each of the players that try to quit at xmin have the same chance. The second round is the usual 2-players war of attrition, where each of the remaining two players chooses her/his exit time 0 ≤ yi < ∞. Both players pay ymin (in addition to the xmin paid in the first round), and the player with the higher exit time gets a reward V . (If both players quit the second round at exactly the same time, the reward is given to one of them following a fair lottery.) Fing the symmetric Nash equilibrium, as well as one non-symmetric Nash equilibrium. What is the expected payoff for each player in each equilibrium? Use backward induction.

ENGR.ECONOMIC ANALYSIS
14th Edition
ISBN:9780190931919
Author:NEWNAN
Publisher:NEWNAN
Chapter1: Making Economics Decisions
Section: Chapter Questions
Problem 1QTC
icon
Related questions
Question

Consider the following 3-players version of the war of attrition. All three players can stay and compete to get a reward that has a value V. Each player pays 1 for each unit of time he/she stays. The winner that gets the reward is the last to quit. If several agents are the last to stay and they quit at exactly the same time, the reward is given to one of them following a fair lottery (each of them has the same probability to get the reward). In the first round, each player chooses her/his first exit time, 0 ≤ xi < ∞, and the player with the lowest value, xmin, pays xmin and quits. The other two players also pay xmin, but they continue to the second round. If several players try to quit together at xmin, only one player actually quits, and that player is determined in a lottery in which each of the players that try to quit at xmin have the same chance. The second round is the usual 2-players war of attrition, where each of the remaining two players chooses her/his exit time 0 ≤ yi < ∞. Both players pay ymin (in addition to the xmin paid in the first round), and the player with the higher exit time gets a reward V . (If both players quit the second round at exactly the same time, the reward is given to one of them following a fair lottery.) Fing the symmetric Nash equilibrium, as well as one non-symmetric Nash equilibrium. What is the expected payoff for each player in each equilibrium? Use backward induction.

Expert Solution
steps

Step by step

Solved in 4 steps with 31 images

Blurred answer
Knowledge Booster
Bayesian Nash Equilibrium
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, economics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
ENGR.ECONOMIC ANALYSIS
ENGR.ECONOMIC ANALYSIS
Economics
ISBN:
9780190931919
Author:
NEWNAN
Publisher:
Oxford University Press
Principles of Economics (12th Edition)
Principles of Economics (12th Edition)
Economics
ISBN:
9780134078779
Author:
Karl E. Case, Ray C. Fair, Sharon E. Oster
Publisher:
PEARSON
Engineering Economy (17th Edition)
Engineering Economy (17th Edition)
Economics
ISBN:
9780134870069
Author:
William G. Sullivan, Elin M. Wicks, C. Patrick Koelling
Publisher:
PEARSON
Principles of Economics (MindTap Course List)
Principles of Economics (MindTap Course List)
Economics
ISBN:
9781305585126
Author:
N. Gregory Mankiw
Publisher:
Cengage Learning
Managerial Economics: A Problem Solving Approach
Managerial Economics: A Problem Solving Approach
Economics
ISBN:
9781337106665
Author:
Luke M. Froeb, Brian T. McCann, Michael R. Ward, Mike Shor
Publisher:
Cengage Learning
Managerial Economics & Business Strategy (Mcgraw-…
Managerial Economics & Business Strategy (Mcgraw-…
Economics
ISBN:
9781259290619
Author:
Michael Baye, Jeff Prince
Publisher:
McGraw-Hill Education