Consider the equation ut urz, 0 0, subject to the boundary conditions u(0, t) = 0, u(1, t) = 0, and the initial condition u(,0) = -8 sin(Tr) - 5 sin(2x) - 3 sin(3m2) + 1 sin(4x). Fill in the constants in the solution: e u(x, t) = help (numbers) sin(x) + sin(x) + e^(2x) sin(27x) +e (3) sin(3x) + e-(47) sin(472)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Consider the equation uuz, 0<x< 1,t> 0,
subject to the boundary conditions u(0, t) = 0, u(1, t) = 0,
and the initial condition
u(,0) = -8 sin(x) - 5 sin(2x) - 3 sin (3x) + 1 sin(4x).
Fill in the constants in the solution:
e
u(x, t) =
help (numbers)
sin(x) +
sin(x) + e^(2x) sin(2x) +e (3) sin(3x) + e-(47) sin(472)
Transcribed Image Text:Consider the equation uuz, 0<x< 1,t> 0, subject to the boundary conditions u(0, t) = 0, u(1, t) = 0, and the initial condition u(,0) = -8 sin(x) - 5 sin(2x) - 3 sin (3x) + 1 sin(4x). Fill in the constants in the solution: e u(x, t) = help (numbers) sin(x) + sin(x) + e^(2x) sin(2x) +e (3) sin(3x) + e-(47) sin(472)
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,