Consider the energy we use everyday in routine tasks, where that energy comes from, and where it goes. When you climb stairs you overcome the force of gravity to raise yourself to some height. It does not matter what the slope of the stairs are; the work done is against gravity which is always vertical so only the height counts. Take a typical human mass of 65 kg (roughly 143 lb of gravitational pull or weight) and a stairway up 3 stories which is about 9 meters. 1.What total work did you do? If you ate an original Krispy Kreme glazed donut afterward with 190 food calories, will you gain or lose as a result? 2.Walking on mostly level ground obviously consumes energy (50 food calories per kilometer). Why is this, even when no net work is done in the physics picture of force and distance?
Kinematics
A machine is a device that accepts energy in some available form and utilizes it to do a type of work. Energy, work, or power has to be transferred from one mechanical part to another to run a machine. While the transfer of energy between two machine parts, those two parts experience a relative motion with each other. Studying such relative motions is termed kinematics.
Kinetic Energy and Work-Energy Theorem
In physics, work is the product of the net force in direction of the displacement and the magnitude of this displacement or it can also be defined as the energy transfer of an object when it is moved for a distance due to the forces acting on it in the direction of displacement and perpendicular to the displacement which is called the normal force. Energy is the capacity of any object doing work. The SI unit of work is joule and energy is Joule. This principle follows the second law of Newton's law of motion where the net force causes the acceleration of an object. The force of gravity which is downward force and the normal force acting on an object which is perpendicular to the object are equal in magnitude but opposite to the direction, so while determining the net force, these two components cancel out. The net force is the horizontal component of the force and in our explanation, we consider everything as frictionless surface since friction should also be calculated while called the work-energy component of the object. The two most basics of energy classification are potential energy and kinetic energy. There are various kinds of kinetic energy like chemical, mechanical, thermal, nuclear, electrical, radiant energy, and so on. The work is done when there is a change in energy and it mainly depends on the application of force and movement of the object. Let us say how much work is needed to lift a 5kg ball 5m high. Work is mathematically represented as Force ×Displacement. So it will be 5kg times the gravitational constant on earth and the distance moved by the object. Wnet=Fnet times Displacement.
Consider the energy we use everyday in routine tasks, where that energy comes from, and where it goes. When you climb stairs you overcome the force of gravity to raise yourself to some height. It does not matter what the slope of the stairs are; the work done is against gravity which is always vertical so only the height counts. Take a typical human mass of 65 kg (roughly 143 lb of gravitational pull or weight) and a stairway up 3 stories which is about 9 meters.
1.What total work did you do? If you ate an original Krispy Kreme glazed donut afterward with 190 food calories, will you gain or lose as a result?
2.Walking on mostly level ground obviously consumes energy (50 food calories per kilometer). Why is this, even when no net work is done in the physics picture of force and distance?
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images