Consider the curve r(t) = (t² + 1)i + tj + (2t² + 3t)k. What is the velocity? What is the accelera tion? Are they constant?

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
**Vector Calculus Problem: Velocity and Acceleration**

Consider the curve given by the vector function \( \mathbf{r}(t) = (t^2 + 1)\mathbf{i} + t\mathbf{j} + (2t^2 + 3t)\mathbf{k} \).

### Problems:

1. **Velocity**: Determine the velocity vector \( \mathbf{v}(t) \) of the curve.
2. **Acceleration**: Determine the acceleration vector \( \mathbf{a}(t) \) of the curve.
3. **Constancy**: Assess whether these vectors are constant.

### Solution:

#### Step 1: Find Velocity

- **Velocity, \( \mathbf{v}(t) \)**, is the first derivative of the position vector \( \mathbf{r}(t) \).

Given:
\[ \mathbf{r}(t) = (t^2 + 1)\mathbf{i} + t\mathbf{j} + (2t^2 + 3t)\mathbf{k} \]

Differentiating component-wise:
- For the \(\mathbf{i}\) component: \(\frac{d}{dt}(t^2 + 1) = 2t\)
- For the \(\mathbf{j}\) component: \(\frac{d}{dt}(t) = 1\)
- For the \(\mathbf{k}\) component: \(\frac{d}{dt}(2t^2 + 3t) = 4t + 3\)

Thus:
\[ \mathbf{v}(t) = 2t\mathbf{i} + 1\mathbf{j} + (4t + 3)\mathbf{k} \]

#### Step 2: Find Acceleration

- **Acceleration, \( \mathbf{a}(t) \)**, is the derivative of the velocity vector \( \mathbf{v}(t) \).

Given:
\[ \mathbf{v}(t) = 2t\mathbf{i} + 1\mathbf{j} + (4t + 3)\mathbf{k} \]

Differentiating component-wise:
- For the \(\mathbf{i}\) component: \(\frac{d}{dt}(2t) = 2\)
- For the \(\mathbf{j}\) component: \(\frac{d}{dt}(1) = 0\)
- For the
Transcribed Image Text:**Vector Calculus Problem: Velocity and Acceleration** Consider the curve given by the vector function \( \mathbf{r}(t) = (t^2 + 1)\mathbf{i} + t\mathbf{j} + (2t^2 + 3t)\mathbf{k} \). ### Problems: 1. **Velocity**: Determine the velocity vector \( \mathbf{v}(t) \) of the curve. 2. **Acceleration**: Determine the acceleration vector \( \mathbf{a}(t) \) of the curve. 3. **Constancy**: Assess whether these vectors are constant. ### Solution: #### Step 1: Find Velocity - **Velocity, \( \mathbf{v}(t) \)**, is the first derivative of the position vector \( \mathbf{r}(t) \). Given: \[ \mathbf{r}(t) = (t^2 + 1)\mathbf{i} + t\mathbf{j} + (2t^2 + 3t)\mathbf{k} \] Differentiating component-wise: - For the \(\mathbf{i}\) component: \(\frac{d}{dt}(t^2 + 1) = 2t\) - For the \(\mathbf{j}\) component: \(\frac{d}{dt}(t) = 1\) - For the \(\mathbf{k}\) component: \(\frac{d}{dt}(2t^2 + 3t) = 4t + 3\) Thus: \[ \mathbf{v}(t) = 2t\mathbf{i} + 1\mathbf{j} + (4t + 3)\mathbf{k} \] #### Step 2: Find Acceleration - **Acceleration, \( \mathbf{a}(t) \)**, is the derivative of the velocity vector \( \mathbf{v}(t) \). Given: \[ \mathbf{v}(t) = 2t\mathbf{i} + 1\mathbf{j} + (4t + 3)\mathbf{k} \] Differentiating component-wise: - For the \(\mathbf{i}\) component: \(\frac{d}{dt}(2t) = 2\) - For the \(\mathbf{j}\) component: \(\frac{d}{dt}(1) = 0\) - For the
Expert Solution
Step 1: given information

Calculus homework question answer, step 1, image 1

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning