Consider the curve C in R3 given by: F(0) = (sin 0 + 0) î+ (sin 0 – 0) ĵ+(-V2 cos 0) k, para 0

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

4) Answer the question shown in the image 

Consider the curve C in R3 given by:
F(0) = (sin 0 + 0) î+ (sin 0 – 0) ĵ+(-v2 cos 0) k, para 0<osa
When calculating the line integral:
I
we obtain that:
1 = | (2 sin 0 ) do
A) I =
1 = [ (sin 0 + 0, sin – 0, -v2cos e) - (cos 0 + 1, cos0 – 1, v2sine) do
B) I =
C) I =
-
2 sin - (cos 0 +1, cos 0 – 1, v2 sin e) do
D) I =
(sin 0 ) de
Transcribed Image Text:Consider the curve C in R3 given by: F(0) = (sin 0 + 0) î+ (sin 0 – 0) ĵ+(-v2 cos 0) k, para 0<osa When calculating the line integral: I we obtain that: 1 = | (2 sin 0 ) do A) I = 1 = [ (sin 0 + 0, sin – 0, -v2cos e) - (cos 0 + 1, cos0 – 1, v2sine) do B) I = C) I = - 2 sin - (cos 0 +1, cos 0 – 1, v2 sin e) do D) I = (sin 0 ) de
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,